Jürgpeter BuserOriginaire de Bâle-Campagne, Peter Buser est né le 27 février 1946. Il fait ses études de mathématiques à l'Université de Bâle où il obtient son diplôme. Il fait ensuite une thèse chez le prof. Heinz Huber, ce qui lui vaut le titre de docteur en mathématiques.
Il poursuit ses études à la Division des recherches spéciales en mathématiques théoriques à l'Université de Bonn (RFA), puis, comme boursier du Fonds national, à l'Université du Minnesota, à Minneapolis (Etats-Unis), ainsi qu'à l'Université de New York, à Stony Brook. Il obtient une habilitation à l'Université de Bonn avec une thèse sur le spectre des longueurs d'une surface de Riemann. Il entre comme professeur à l'EPFL en 1982.
Son domaine de recherche est la géométrie différentielle. Il s'est notamment intéressé au spectre du Laplacien des variétés riemanniennes, aux problèmes d'isospectralité, aux groupes cristallographiques et aux relations entre la théorie des graphes et la géométrie du Laplacien. Ces recherches ont fait l'objet de nombreuses publications. Depuis quelques années, il s'occupe aussi des méthodes de représentation graphique des scènes géométriques par des moyens informatiques. Depuis 1982, il a été professeur invité dans différentes universités étrangères. Il a obtenu le titre de docteur honoris causa de l'Université de Helsinki en juin 2003.
Daniel ConstamDaniel Constam received his doctoral degree in Natural Sciences from ETH Zürich in the neuroimmunology group of Adriano Fontana (1993). For postdoctoral studies, he joined the laboratory of Elizabeth Robertson as an EMBO fellow at Harvard University to characterize proprotein convertase (PC) functions in mouse models of early embryogenesis (1994-1999). As an ISREC group leader (>2000) and Associate Professor at EPFL (>2007), he initially continued to study pluripotency and lineage differentiation during development and found that several secreted PCs jointly regulate cell-cell adhesion and TGFβ signaling pathways at the cross-roads of stem cell and cancer biology. To map the proteolytic activity of PCs and their relative distribution in exocytic or endocytic vesicles, his lab developed PC-specific FRET sensors for high resolution live imaging in normal cells and in tumour-host interactions. His studies on TGFβ signaling also identified the RNA-binding protein Bicc1 and its self-polymerization in membrane-less organelles as regulators of mRNA translation and cell metabolism that cooperate with primary cilia to prevent cystic growth in renal tubules and in pancreatic and bile ducts.
Michele CeriottiMichele Ceriotti received his Ph.D. in Physics from ETH Zürich in 2010. He spent three years in Oxford as a Junior Research Fellow at Merton College. Since 2013 he leads the laboratory for Computational Science and Modeling in the Institute of Materials at EPFL. His research revolves around the atomic-scale modelling of materials, based on the sampling of quantum and thermal fluctuations and on the use of machine learning to predict and rationalize structure-property relations. He has been awarded the IBM Research Forschungspreis in 2010, the Volker Heine Young Investigator Award in 2013, an ERC Starting Grant in 2016, and the IUPAP C10 Young Scientist Prize in 2018.
Paolo RicciPaolo Ricci earned his masters degree in nuclear engineering at the Politecnico di Torino, Turin (Italy) in 2000. His doctoral studies were conducted at the Los Alamos National Laboratory, with focus on kinetic simulation of magnetic reconnection in the Earth's magnetotail. He spent two-and-a-half years as a postdoctoral researcher at Dartmouth College's Department of Physics and Astronomy, where he worked on gyrokinetic simulations of the Z pinch. He joined the EPFL's Swiss Plasma Center (SPC), as a EURATOM fellow in 2006, was named Tenure Track Assistant Professor in June 2010, and Associate Professor in August 2016. He is at the head of the SPC theory group. Paolo Ricci is the recipient of the 2016 Section de Physique Teaching Prize and of the 2021 Craie d'Or award from the EPFL physics bachelor students.
Babak FalsafiBabak is a Professor in the School of Computer and Communication Sciences and the founding director of the EcoCloud, an industrial/academic consortium at EPFL investigating scalable data-centric technologies. He has made numerous contributions to computer system design and evaluation including a scalable multiprocessor architecture which was prototyped by Sun Microsystems (now Oracle), snoop filters and memory streaming technologies that are incorporated into IBM BlueGene/P and Q and ARM cores, and computer system performance evaluation methodologies that have been in use by AMD, HP and Google PerKit . He has shown that hardware memory consistency models are neither necessary (in the 90's) nor sufficient (a decade later) to achieve high performance in multiprocessor systems. These results eventually led to fence speculation in modern microprocessors. His latest work on workload-optimized server processors laid the foundation for the first generation of Cavium ARM server CPUs, ThunderX. He is a recipient of an NSF CAREER award, IBM Faculty Partnership Awards, and an Alfred P. Sloan Research Fellowship. He is a fellow of IEEE and ACM.
Emre TelatarI. Emre Telatar received the B.Sc. degree in electrical engineering from the Middle East Technical University, Ankara, Turkey, in 1986. He received the S.M. and Ph.D. degrees in electrical engineering and computer science from the Massachusetts Institute of Technology, Cambridge, in 1988 and 1992 respectively. In 1992, he joined the Communications Analysis Research Department at AT&T Bell Laboratories (later Lucent Technologies), Murray Hill, NJ. He has been at the EPFL since 2000.
Emre Telatar was the recipient of the IEEE Information Theory Society Paper Award in 2001. He was a program co-chair for the IEEE International Symposium on Information Theory in 2002, and associate editor for Shannon Theory for the IEEE Information Theory Transactions from 2001 to 2004. He was awarded the EPFL Agepoly teaching prize in 2005.
Emre Telatar's research interests are in communication and information theories.
Maryam KamgarpourMaryam Kamgarpour holds a Doctor of Philosophy in Engineering from the University of California, Berkeley and a Bachelor of Applied Science from University of Waterloo, Canada. Her research is on safe decision-making and control under uncertainty, game theory and mechanism design, mixed integer and stochastic optimization and control. Her theoretical research is motivated by control challenges arising in intelligent transportation networks, robotics, power grid systems and healthcare. She is the recipient of NASA High Potential Individual Award, NASA Excellence in Publication Award, and the European Union (ERC) Starting Grant.