CorollaryIn mathematics and logic, a corollary (ˈkɒrəˌlɛri , kɒˈrɒləri ) is a theorem of less importance which can be readily deduced from a previous, more notable statement. A corollary could, for instance, be a proposition which is incidentally proved while proving another proposition; it might also be used more casually to refer to something which naturally or incidentally accompanies something else (e.g., violence as a corollary of revolutionary social changes). In mathematics, a corollary is a theorem connected by a short proof to an existing theorem.
Necessity and sufficiencyIn logic and mathematics, necessity and sufficiency are terms used to describe a conditional or implicational relationship between two statements. For example, in the conditional statement: "If P then Q", Q is necessary for P, because the truth of Q is guaranteed by the truth of P. (Equivalently, it is impossible to have P without Q, or the falsity of Q ensures the falsity of P.) Similarly, P is sufficient for Q, because P being true always implies that Q is true, but P not being true does not always imply that Q is not true.
Logical equivalenceIn logic and mathematics, statements and are said to be logically equivalent if they have the same truth value in every model. The logical equivalence of and is sometimes expressed as , , , or , depending on the notation being used. However, these symbols are also used for material equivalence, so proper interpretation would depend on the context. Logical equivalence is different from material equivalence, although the two concepts are intrinsically related. In logic, many common logical equivalences exist and are often listed as laws or properties.
Foundations of mathematicsFoundations of mathematics is the study of the philosophical and logical and/or algorithmic basis of mathematics, or, in a broader sense, the mathematical investigation of what underlies the philosophical theories concerning the nature of mathematics. In this latter sense, the distinction between foundations of mathematics and philosophy of mathematics turns out to be vague. Foundations of mathematics can be conceived as the study of the basic mathematical concepts (set, function, geometrical figure, number, etc.
Law of noncontradictionIn logic, the law of non-contradiction (LNC) (also known as the law of contradiction, principle of non-contradiction (PNC), or the principle of contradiction) states that contradictory propositions cannot both be true in the same sense at the same time, e. g. the two propositions "p is the case" and "p is not the case" are mutually exclusive. Formally, this is expressed as the tautology ¬(p ∧ ¬p). The law is not to be confused with the law of excluded middle which states that at least one, "p is the case" or "p is not the case" holds.
Statement (logic)In logic and semantics, the term statement is variously understood to mean either: a meaningful declarative sentence that is true or false, or a proposition. Which is the assertion that is made by (i.e., the meaning of) a true or false declarative sentence. In the latter case, a statement is distinct from a sentence in that a sentence is only one formulation of a statement, whereas there may be many other formulations expressing the same statement. By a statement, I mean "that which one states", not one's stating of it.
Hypothetical syllogismIn classical logic, a hypothetical syllogism is a valid argument form, a syllogism with a conditional statement for one or both of its premises. An example in English: If I do not wake up, then I cannot go to work. If I cannot go to work, then I will not get paid. Therefore, if I do not wake up, then I will not get paid. The term originated with Theophrastus. A pure hypothetical syllogism is a syllogism in which both premises and conclusions are conditionals.
Logical conjunctionIn logic, mathematics and linguistics, and () is the truth-functional operator of conjunction or logical conjunction. The logical connective of this operator is typically represented as or or (prefix) or or in which is the most modern and widely used. The and of a set of operands is true if and only if all of its operands are true, i.e., is true if and only if is true and is true. An operand of a conjunction is a conjunct.
Logical connectiveIn logic, a logical connective (also called a logical operator, sentential connective, or sentential operator) is a logical constant. They can be used to connect logical formulas. For instance in the syntax of propositional logic, the binary connective can be used to join the two atomic formulas and , rendering the complex formula . Common connectives include negation, disjunction, conjunction, implication, and equivalence.
Axiomatic systemIn mathematics and logic, an axiomatic system is any set of axioms from which some or all axioms can be used in conjunction to logically derive theorems. A theory is a consistent, relatively-self-contained body of knowledge which usually contains an axiomatic system and all its derived theorems. An axiomatic system that is completely described is a special kind of formal system. A formal theory is an axiomatic system (usually formulated within model theory) that describes a set of sentences that is closed under logical implication.