Wolf Hendrik HuwaldDr. Hendrik Huwald is a scientist at the Laboratory of Cryospheric Sciences (CRYOS) and a lecturer at the Environmental Sciences and Engineering Section (SSIE) of the Swiss Federal Institute of Technology in Lausanne (EPFL). He completed his PhD in 2003 at the Swiss Federal Institute of Technology in Zürich (ETHZ), developing a numerical model for sea ice and studying energy transfer processes in the Arctic. Between 2005 and 2012 he was a post-doctoral fellow and scientist at the Laboratory of Environmental Fluid Mechanics and Hydrology (EFLUM) of EPFL working on Alpine snow-atmosphere interaction, and energy balance-related research mainly in mountain regions. During this time, he designed, led and participated in numerous large field experiments in different environments. In 2013 he joined the newly founded CRYOS laboratory where he conducted research in the domains of snow science, hydrology, boundary layer meteorology and environmental sensing. He has extensive experience with project management both on national and international level.
Christian Ludwig2005 - today: Adjunct Professor at EPFL in the field of Solid Waste Treatment and head of the Chemical Processes and Materials research group (CPM) at Paul Scherrer Institute (PSI). Joint EPFL-PSI Professorship on Solid Waste Treatment. 2000 - today: Head, Group of Chemical Processes and Materials (CPM) at Paul Scherrer Institut (PSI). In 2009 the LEM unit was closed and the CPM group is now affiliated to the Bioenergy and Catalysis Laboratory (LBK) of the Energy and Environment Research Division (ENE). Since June 2002 permanent position ("tenure"). 1997 - 1999: Senior Scientist. Paul Scherrer Institut (PSI), General Energy Research Department, Element Cycles Section. 1995 - 1997: Research Fellow. Swiss Federal Institute for Environmental Science and Technology (EAWAG), Department of Resource and Waste Management. 1993 - 1995: Post-doc Fellow. University of California Davis, Department of Land, Air, and Water Resources (LAWR). 1990 - 1993: PhD Student. University of Berne, Department of Inorganic, Analytical, and Physical Chemistry. 1989 - 1990: Master Student. University of Berne, Department of Inorganic, Analytical, and Physical Chemistry.
Xun LiaoI'm a LCA sustainability consultant, focusing on R&D and applications of integrating LCA with traditional corporate ESG reporting and management, as well as bridging the gap between LCA, Supply chain management (SCM) , risk assessment and business sustainability investment and decision-making.
As a Marie Curie PhD fellow in EPFL, I'm working on sustainability (social/economic/environmental) assessment, design and optimization of different biorefinery concepts.
As a sustainability consultant, I'm researching and developing methodologies and tools for the following field:
- Corporate ESG and sustainability investment
-Assess and manage GHG emissions, Water and land, renewable energy, human health, Biodiversity, social issues
-Materiality, CDP report, GRI and other reporting initiatives
-Competitive advantage through investment in sustainability (ESG) programs
- Strategy, Supply chain management and risk assessment within the framework of Life Cycle thinking
-
Commodity, Supply chain, Operational risks due to regulatory, physical factors.
-
Life cycle costing
-
Risk assessment
-
Integration of assessment, optimization and management of supply chain, downstream and corporate operational data
I have many years experience in life cycle assessment, with expertise in water database modeling and assessment, energy analysis and life cycle inventory modeling. Worked with various industries, including energy, agri-food, packaging, tire, oil & gas, semi-conductor, pet food, pharmaceutical and textile sectors, for clients such as World Business Council for Sustainable Development, Mondelez, Kraft Foods, Nestlé, Michelin, Bayer, Pfizer, Huntsman, GE, Intel, and many others. Dusan LicinaDusan Licina is a Tenure Track Assistant Professor of Indoor Environmental Quality at the School for Architecture, Civil, and Environmental Engineering (ENAC) at EPFL. He leads the Human-Oriented Built Environment Lab (HOBEL) in Fribourg since 1 June 2018. Dusan’s research and teaching are driven by the need to advance knowledge of the intersections between people and the built environment in order to ensure high indoor environmental quality for building occupants with minimum energy input. His research group specializes in air quality engineering, focusing on understanding of concentrations, dynamics and fates of air pollutants within buildings, and development and application of methods to quantitatively describe relationships between air pollution sources and consequent human exposures. His research interests also encompass optimization of building ventilation systems with an aim to improve air quality and thermal comfort in an energy-efficient manner. Throughout his career, Dusan specialized in air quality engineering, focusing on sources and transport of air pollutants in buildings, human exposure assessment, and optimization of building ventilation systems with an aim to improve air quality. Dusan completed my joint Doctorate degree at the National University of Singapore and Technical University of Denmark. He was formerly master and bachelor student in Mechanical Engineering at the University of Belgrade, Serbia. Prior to joining EPFL, Dusan worked for 3.5 years in the USA, first he was a postdoctoral researcher at the University of California Berkeley, and then he served as director on the standard development team at International WELL Building Institute (IWBI) in New York. Dusan is the recipient of several honors and awards, including Ralph G. Nevin’s award by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) given in recognition of significant accomplishment in the study of human response to the environment. He is editorial board member of the highly acclaimed Indoor Air journal. He is passionate about raising awareness about the air quality issues worldwide and developing buildings that are not only energy efficient, but that also contribute to “Michelin Star” indoor air quality.