Roland John TormeyI am a sociologist and learning scientist researching and teaching on engineering education. I'm particularly focused on the roles of emotion and self-regulation in engineering teaching and learning. My profile is accessible here.
Francesco MondadaDr. Mondada received his M.Sc. in micro-engineering in 1991 and his Doctoral degree in 1997 at EPFL. During his thesis he co-founded the company K-Team, being both CEO and president of the company for about 5 years. He is one of the three main developers of the Khepera robot, considered as a standard in bio-inspired robotics and used by more than 1,000 universities and research centers worldwide. Fully back in research in 2000 and after a short period at CALTECH, he participated to the SWARM-BOTS project as the main developer of the s-bot robot platform, which was ranked on position 39 in the list of The 50 Best Robots Ever (fiction or real) by the Wired Journal in 2006. The SWARM-BOTS project was selected as FET-IST success story by the EU commission. He is author of more than 100 papers in the field of bio-inspired robotics and system level robot design. He is co-editor of several international conference proceedings. In November 2005 he received the EPFL Latsis University prize for his contributions to bio-inspired robotics. In 2011 he received the "Crédit Suisse Award for Best Teaching" from EPFL and in 2012 the "polysphère" award from the students as best teacher in the school of engineering. His interests include the development of innovative mechatronic solutions for mobile and modular robots, the creation of know-how for future embedded applications, and making robot platforms more accessible for education, research, and industrial development.
Juan Carlos FarahJuan Carlos Farah received his Bachelor of Arts in Economics from Harvard University, completed studies in Computer Science at Stanford University, and a Master of Science in Computing at Imperial College London. Since 2017, Juan Carlos has worked as a researcher and software engineer at the Interaction Systems Group (REACT) of the École Polytechnique Fédérale de Lausanne (EPFL). He is the technical lead for the Graasp Ecosystem, a suite of native and web applications that support digital education activities and are the core technology behind the Horizon 2020 Next-Lab and GO-GA European Innovation Action Projects. As a part of these projects, Juan Carlos conducted research on privacy-preserving systems for technology-enhanced learning. He is currently pursuing a PhD in Robotics and Intelligent Systems at EPFL, focusing on human-computer interaction and the perception of anthropomorphic traits in intelligent conversational agents. As part of his teaching duties, he gives a yearly lecture on trust, privacy and reputation frameworks for social media platforms.
Henry MarkramHenry Markram started a dual scientific and medical career at the University of Cape Town, in South Africa. His scientific work in the 80s revealed the polymodal receptive fields of pontomedullary reticular formation neurons in vivo and how acetylcholine re-organized these sensory maps.
He moved to Israel in 1988 and obtained his PhD at the Weizmann Institute where he discovered a link between acetylcholine and memory mechanisms by being the first to show that acetylcholine modulates the NMDA receptor in vitro studies, and thereby gates which synapses can undergo synaptic plasticity. He was also the first to characterize the electrical and anatomical properties of the cholinergic neurons in the medial septum diagonal band.
He carried out a first postdoctoral study as a Fulbright Scholar at the NIH, on the biophysics of ion channels on synaptic vesicles using sub-fractionation methods to isolate synaptic vesicles and patch-clamp recordings to characterize the ion channels. He carried out a second postdoctoral study at the Max Planck Institute, as a Minerva Fellow, where he discovered that individual action potentials propagating back into dendrites also cause pulsed influx of Ca2 into the dendrites and found that sub-threshold activity could also activated a low threshold Ca2 channel. He developed a model to show how different types of electrical activities can divert Ca2 to activate different intracellular targets depending on the speed of Ca2 influx an insight that helps explain how Ca2 acts as a universal second messenger. His most well known discovery is that of the millisecond watershed to judge the relevance of communication between neurons marked by the back-propagating action potential. This phenomenon is now called Spike Timing Dependent Plasticity (STDP), which many laboratories around the world have subsequently found in multiple brain regions and many theoreticians have incorporated as a learning rule. At the Max-Planck he also started exploring the micro-anatomical and physiological principles of the different neurons of the neocortex and of the mono-synaptic connections that they form - the first step towards a systematic reverse engineering of the neocortical microcircuitry to derive the blue prints of the cortical column in a manner that would allow computer model reconstruction.
He received a tenure track position at the Weizmann Institute where he continued the reverse engineering studies and also discovered a number of core principles of the structural and functional organization such as differential signaling onto different neurons, models of dynamic synapses with Misha Tsodyks, the computational functions of dynamic synapses, and how GABAergic neurons map onto interneurons and pyramidal neurons. A major contribution during this period was his discovery of Redistribution of Synaptic Efficacy (RSE), where he showed that co-activation of neurons does not only alter synaptic strength, but also the dynamics of transmission. At the Weizmann, he also found the tabula rasa principle which governs the random structural connectivity between pyramidal neurons and a non-random functional connectivity due to target selection. Markram also developed a novel computation framework with Wolfgang Maass to account for the impact of multiple time constants in neurons and synapses on information processing called liquid computing or high entropy computing.
In 2002, he was appointed Full professor at the EPFL where he founded and directed the Brain Mind Institute. During this time Markram continued his reverse engineering approaches and developed a series of new technologies to allow large-scale multi-neuron patch-clamp studies. Markrams lab discovered a novel microcircuit plasticity phenomenon where connections are formed and eliminated in a Darwinian manner as apposed to where synapses are strengthening or weakened as found for LTP. This was the first demonstration that neural circuits are constantly being re-wired and excitation can boost the rate of re-wiring.
At the EPFL he also completed the much of the reverse engineering studies on the neocortical microcircuitry, revealing deeper insight into the circuit design and built databases of the blue-print of the cortical column. In 2005 he used these databases to launched the Blue Brain Project. The BBP used IBMs most advanced supercomputers to reconstruct a detailed computer model of the neocortical column composed of 10000 neurons, more than 340 different types of neurons distributed according to a layer-based recipe of composition and interconnected with 30 million synapses (6 different types) according to synaptic mapping recipes. The Blue Brain team built dozens of applications that now allow automated reconstruction, simulation, visualization, analysis and calibration of detailed microcircuits. This Proof of Concept completed, Markrams lab has now set the agenda towards whole brain and molecular modeling.
With an in depth understanding of the neocortical microcircuit, Markram set a path to determine how the neocortex changes in Autism. He found hyper-reactivity due to hyper-connectivity in the circuitry and hyper-plasticity due to hyper-NMDA expression. Similar findings in the Amygdala together with behavioral evidence that the animal model of autism expressed hyper-fear led to the novel theory of Autism called the Intense World Syndrome proposed by Henry and Kamila Markram. The Intense World Syndrome claims that the brain of an Autist is hyper-sensitive and hyper-plastic which renders the world painfully intense and the brain overly autonomous. The theory is acquiring rapid recognition and many new studies have extended the findings to other brain regions and to other models of autism.
Markram aims to eventually build detailed computer models of brains of mammals to pioneer simulation-based research in the neuroscience which could serve to aggregate, integrate, unify and validate our knowledge of the brain and to use such a facility as a new tool to explore the emergence of intelligence and higher cognitive functions in the brain, and explore hypotheses of diseases as well as treatments.
Pascal FuaPascal Fua received an engineering degree from Ecole Polytechnique, Paris, in 1984 and the Ph.D. degree in Computer Science from the University of Orsay in 1989. He then worked at SRI International and INRIA Sophia-Antipolis as a Computer Scientist. He joined EPFL in 1996 where he is now a Professor in the School of Computer and Communication Science and heads the Computer Vision Laboratory. His research interests include shape modeling and motion recovery from images, analysis of microscopy images, and Augmented Reality. His research interests include shape modeling and motion recovery from images, analysis of microscopy images, and machine learning. He has (co)authored over 300 publications in refereed journals and conferences. He is an IEEE Fellow and has been an Associate Editor of IEEE journal Transactions for Pattern Analysis and Machine Intelligence. He often serves as program committee member, area chair, and program chair of major vision conferences and has cofounded three spinoff companies (Pix4D, PlayfulVision, and NeuralConcept).
Rolf GruetterAwards:
1999 Young Investigator Award Plenary Lectureship
, International Society for Neurochemistry
2011 Fellow
, ESMRMB
2011 Teaching Award
, Section Sciences de la Vie, EPFL
Devis TuiaI come from Ticino and studied in Lausanne, between UNIL and EPFL. After my PhD at UNIL in remote sensing, I was postdoc in Valencia (Spain), Boulder (CO) and EPFL, working on model adaptation and prior knowledge integration in machine learning. In 2014 I became Research Assistant Professor at University of Zurich, where I started the 'multimodal remote sensing' group. In 2017, I joined Wageningen University (NL), where I was professor of the GeoInformation Science and Remote Sensing Laboratory. Since 2020, I joined EPFL Valais, to start the ECEO lab, working at the interface between Earth observation, machine learning and environmental sciences.
Grégoire CourtineGrégoire Courtine was originally trained in Mathematics and Physics, but received his PhD degree in Experimental Medicine from the University of Pavia, Italy, and the INSERM Plasticity and Motricity, in France, in 2003. From 2004-2007, he held a Post-doctoral Fellow position at the Brain Research Institute, University of California at Los Angeles (UCLA) under the supervision of Dr. Reggie Edgerton, and was a research associate for the Christopher and Dana Reeve Foundation (CDRF). In 2008, he became Assistant Professor at the faculty of Medicine of the University of Zurich where he established his own research laboratory. In 2012, he was nominated Associate Professor at the Swiss Federal Institute of Technology Lausanne (EPFL) where he holds the International paraplegic foundation (IRP) chair in spinal cord repair at the Center for Neuroprosthetics and the Brain Mind Institute. He published several articles proposing radically new approaches for restoring function after spinal cord injury, which were discussed in national and international press extensively. He received numerous honors and awards such as the 2007 UCLA Chancellors award for excellence in post-doctoral research and the 2009 Schellenberg Prize for his innovative research in spinal cord injury awarded by the International Foundation of Research in Paraplegia.