Unimodular matrixIn mathematics, a unimodular matrix M is a square integer matrix having determinant +1 or −1. Equivalently, it is an integer matrix that is invertible over the integers: there is an integer matrix N that is its inverse (these are equivalent under Cramer's rule). Thus every equation Mx = b, where M and b both have integer components and M is unimodular, has an integer solution. The n × n unimodular matrices form a group called the n × n general linear group over , which is denoted .
Sequential quadratic programmingSequential quadratic programming (SQP) is an iterative method for constrained nonlinear optimization which may be considered a quasi-Newton method. SQP methods are used on mathematical problems for which the objective function and the constraints are twice continuously differentiable. SQP methods solve a sequence of optimization subproblems, each of which optimizes a quadratic model of the objective subject to a linearization of the constraints.
Geometric programmingA geometric program (GP) is an optimization problem of the form where are posynomials and are monomials. In the context of geometric programming (unlike standard mathematics), a monomial is a function from to defined as where and . A posynomial is any sum of monomials. Geometric programming is closely related to convex optimization: any GP can be made convex by means of a change of variables. GPs have numerous applications, including component sizing in IC design, aircraft design, maximum likelihood estimation for logistic regression in statistics, and parameter tuning of positive linear systems in control theory.
Heuristic (computer science)In mathematical optimization and computer science, heuristic (from Greek εὑρίσκω "I find, discover") is a technique designed for problem solving more quickly when classic methods are too slow for finding an exact or approximate solution, or when classic methods fail to find any exact solution. This is achieved by trading optimality, completeness, accuracy, or precision for speed. In a way, it can be considered a shortcut.
Costate equationThe costate equation is related to the state equation used in optimal control. It is also referred to as auxiliary, adjoint, influence, or multiplier equation. It is stated as a vector of first order differential equations where the right-hand side is the vector of partial derivatives of the negative of the Hamiltonian with respect to the state variables. The costate variables can be interpreted as Lagrange multipliers associated with the state equations.
Quadratic assignment problemThe quadratic assignment problem (QAP) is one of the fundamental combinatorial optimization problems in the branch of optimization or operations research in mathematics, from the category of the facilities location problems first introduced by Koopmans and Beckmann. The problem models the following real-life problem: There are a set of n facilities and a set of n locations. For each pair of locations, a distance is specified and for each pair of facilities a weight or flow is specified (e.g.