System analysisSystem analysis in the field of electrical engineering characterizes electrical systems and their properties. System analysis can be used to represent almost anything from population growth to audio speakers; electrical engineers often use it because of its direct relevance to many areas of their discipline, most notably signal processing, communication systems and control systems. A system is characterized by how it responds to input signals. In general, a system has one or more input signals and one or more output signals.
LinearityIn mathematics, the term linear is used in two distinct senses for two different properties: linearity of a function (or mapping ); linearity of a polynomial. An example of a linear function is the function defined by that maps the real line to a line in the Euclidean plane R2 that passes through the origin. An example of a linear polynomial in the variables and is Linearity of a mapping is closely related to proportionality. Examples in physics include the linear relationship of voltage and current in an electrical conductor (Ohm's law), and the relationship of mass and weight.
Convergence of Fourier seriesIn mathematics, the question of whether the Fourier series of a periodic function converges to a given function is researched by a field known as classical harmonic analysis, a branch of pure mathematics. Convergence is not necessarily given in the general case, and certain criteria must be met for convergence to occur. Determination of convergence requires the comprehension of pointwise convergence, uniform convergence, absolute convergence, Lp spaces, summability methods and the Cesàro mean.
Lyapunov equationIn control theory, the discrete Lyapunov equation (also known as Stein equation) is of the form where is a Hermitian matrix and is the conjugate transpose of . The continuous Lyapunov equation is of the form The Lyapunov equation occurs in many branches of control theory, such as stability analysis and optimal control. This and related equations are named after the Russian mathematician Aleksandr Lyapunov. In the following theorems , and and are symmetric. The notation means that the matrix is positive definite.