CryptographyCryptography, or cryptology (from κρυπτός "hidden, secret"; and γράφειν graphein, "to write", or -λογία -logia, "study", respectively), is the practice and study of techniques for secure communication in the presence of adversarial behavior. More generally, cryptography is about constructing and analyzing protocols that prevent third parties or the public from reading private messages. Modern cryptography exists at the intersection of the disciplines of mathematics, computer science, information security, electrical engineering, digital signal processing, physics, and others.
Pseudorandom generatorIn theoretical computer science and cryptography, a pseudorandom generator (PRG) for a class of statistical tests is a deterministic procedure that maps a random seed to a longer pseudorandom string such that no statistical test in the class can distinguish between the output of the generator and the uniform distribution. The random seed itself is typically a short binary string drawn from the uniform distribution. Many different classes of statistical tests have been considered in the literature, among them the class of all Boolean circuits of a given size.
Strong cryptographyStrong cryptography or cryptographically strong are general terms used to designate the cryptographic algorithms that, when used correctly, provide a very high (usually unsurmountable) level of protection against any eavesdropper, including the government agencies. There is no precise definition of the boundary line between the strong cryptography and (breakable) weak cryptography, as this border constantly shifts due to improvements in hardware and cryptanalysis techniques.
Fiat–Shamir heuristicIn cryptography, the Fiat–Shamir heuristic is a technique for taking an interactive proof of knowledge and creating a digital signature based on it. This way, some fact (for example, knowledge of a certain secret number) can be publicly proven without revealing underlying information. The technique is due to Amos Fiat and Adi Shamir (1986). For the method to work, the original interactive proof must have the property of being public-coin, i.e. verifier's random coins are made public throughout the proof protocol.
Capstone (cryptography)Capstone is a United States government long-term project to develop cryptography standards for public and government use. Capstone was authorized by the Computer Security Act of 1987, driven by the National Institute of Standards and Technology (NIST) and the National Security Agency (NSA); the project began in 1993. The initiative involved four standard algorithms: a data encryption algorithm called Skipjack, along with the Clipper chip that included the Skipjack algorithm, a digital signature algorithm, Digital Signature Algorithm (DSA), a hash function, SHA-1, and a key exchange protocol.
Blinding (cryptography)In cryptography, blinding is a technique by which an agent can provide a service to (i.e., compute a function for) a client in an encoded form without knowing either the real input or the real output. Blinding techniques also have applications to preventing side-channel attacks on encryption devices. More precisely, Alice has an input x and Oscar has a function f. Alice would like Oscar to compute y = f(x) for her without revealing either x or y to him.
Kerckhoffs's principleKerckhoffs's principle (also called Kerckhoffs's desideratum, assumption, axiom, doctrine or law) of cryptography was stated by Dutch-born cryptographer Auguste Kerckhoffs in the 19th century. The principle holds that a cryptosystem should be secure, even if everything about the system, except the key, is public knowledge. This concept is widely embraced by cryptographers, in contrast to security through obscurity, which is not. Kerckhoffs's principle was phrased by American mathematician Claude Shannon as "the enemy knows the system", i.