Submodular set functionIn mathematics, a submodular set function (also known as a submodular function) is a set function whose value, informally, has the property that the difference in the incremental value of the function that a single element makes when added to an input set decreases as the size of the input set increases. Submodular functions have a natural diminishing returns property which makes them suitable for many applications, including approximation algorithms, game theory (as functions modeling user preferences) and electrical networks.
Eulerian pathIn graph theory, an Eulerian trail (or Eulerian path) is a trail in a finite graph that visits every edge exactly once (allowing for revisiting vertices). Similarly, an Eulerian circuit or Eulerian cycle is an Eulerian trail that starts and ends on the same vertex. They were first discussed by Leonhard Euler while solving the famous Seven Bridges of Königsberg problem in 1736. The problem can be stated mathematically like this: Given the graph in the image, is it possible to construct a path (or a cycle; i.
Weak formulationWeak formulations are important tools for the analysis of mathematical equations that permit the transfer of concepts of linear algebra to solve problems in other fields such as partial differential equations. In a weak formulation, equations or conditions are no longer required to hold absolutely (and this is not even well defined) and has instead weak solutions only with respect to certain "test vectors" or "test functions". In a strong formulation, the solution space is constructed such that these equations or conditions are already fulfilled.
Hasse diagramIn order theory, a Hasse diagram (ˈhæsə; ˈhasə) is a type of mathematical diagram used to represent a finite partially ordered set, in the form of a drawing of its transitive reduction. Concretely, for a partially ordered set one represents each element of as a vertex in the plane and draws a line segment or curve that goes upward from one vertex to another vertex whenever covers (that is, whenever , and there is no distinct from and with ). These curves may cross each other but must not touch any vertices other than their endpoints.
Partition of a setIn mathematics, a partition of a set is a grouping of its elements into non-empty subsets, in such a way that every element is included in exactly one subset. Every equivalence relation on a set defines a partition of this set, and every partition defines an equivalence relation. A set equipped with an equivalence relation or a partition is sometimes called a setoid, typically in type theory and proof theory. A partition of a set X is a set of non-empty subsets of X such that every element x in X is in exactly one of these subsets (i.
Pentagonal number theoremIn mathematics, the pentagonal number theorem, originally due to Euler, relates the product and series representations of the Euler function. It states that In other words, The exponents 1, 2, 5, 7, 12, ... on the right hand side are given by the formula gk = k(3k − 1)/2 for k = 1, −1, 2, −2, 3, ... and are called (generalized) pentagonal numbers . (The constant term 1 corresponds to .) This holds as an identity of convergent power series for , and also as an identity of formal power series.
Atomic packing factorIn crystallography, atomic packing factor (APF), packing efficiency, or packing fraction is the fraction of volume in a crystal structure that is occupied by constituent particles. It is a dimensionless quantity and always less than unity. In atomic systems, by convention, the APF is determined by assuming that atoms are rigid spheres. The radius of the spheres is taken to be the maximum value such that the atoms do not overlap.
Leech latticeIn mathematics, the Leech lattice is an even unimodular lattice Λ24 in 24-dimensional Euclidean space, which is one of the best models for the kissing number problem. It was discovered by . It may also have been discovered (but not published) by Ernst Witt in 1940. The Leech lattice Λ24 is the unique lattice in 24-dimensional Euclidean space, E24, with the following list of properties: It is unimodular; i.e., it can be generated by the columns of a certain 24×24 matrix with determinant 1. It is even; i.e.
Finite volume methodThe finite volume method (FVM) is a method for representing and evaluating partial differential equations in the form of algebraic equations. In the finite volume method, volume integrals in a partial differential equation that contain a divergence term are converted to surface integrals, using the divergence theorem. These terms are then evaluated as fluxes at the surfaces of each finite volume. Because the flux entering a given volume is identical to that leaving the adjacent volume, these methods are conservative.
Eigenvector centralityIn graph theory, eigenvector centrality (also called eigencentrality or prestige score) is a measure of the influence of a node in a network. Relative scores are assigned to all nodes in the network based on the concept that connections to high-scoring nodes contribute more to the score of the node in question than equal connections to low-scoring nodes. A high eigenvector score means that a node is connected to many nodes who themselves have high scores. Google's PageRank and the Katz centrality are variants of the eigenvector centrality.