Fonction sous-modulaireEn optimisation combinatoire, les fonctions sous-modulaires sont des fonctions d'ensemble particulières. Soient E un ensemble et f une fonction qui à tout sous-ensemble X de E associe un réel f(X), on dit que f est sous-modulaire si l'inégalité suivante est vérifiée pour tout sous-ensemble X et Y de E Les fonctions sous-modulaire peuvent être vues comme l'analogue discret des fonctions convexes.
Eulerian pathIn graph theory, an Eulerian trail (or Eulerian path) is a trail in a finite graph that visits every edge exactly once (allowing for revisiting vertices). Similarly, an Eulerian circuit or Eulerian cycle is an Eulerian trail that starts and ends on the same vertex. They were first discussed by Leonhard Euler while solving the famous Seven Bridges of Königsberg problem in 1736. The problem can be stated mathematically like this: Given the graph in the image, is it possible to construct a path (or a cycle; i.
Formulation faibleEn comparaison avec la formulation forte, la formulation faible est une autre manière d'énoncer un problème physique régi par des équations différentielles ou aux dérivées partielles. Une solution forte du problème d’origine est également solution de la formulation faible. Une solution de cette dernière est naturellement appelée solution faible. L’intérêt de cette approche est de pouvoir disposer de concepts et de propriétés de l’analyse fonctionnelle, en particulier ceux des espaces de Hilbert et de Sobolev.
Diagramme de HasseEn mathématiques, le diagramme de Hasse, du nom du mathématicien allemand Helmut Hasse, est une représentation visuelle d'un ordre fini. Similaire à la représentation habituelle d’un graphe sur papier, il en facilite la compréhension. Dans un diagramme de Hasse : Les éléments ordonnés sont représentés par des points. La relation entre deux éléments est représentée par un segment entre deux points. Si un élément x est ≤ à un autre élément y, alors le point représentant x est placé plus bas que celui pour y.
Partition d'un ensemblevignette|Les 52 partitions d'un ensemble à 5 éléments. Les points noirs représentent les éléments de l'ensemble. Une région colorée correspond à un bloc de la partition qui regroupe plusieurs points noirs. Un point noir isolé signifie que cet élément appartient à un bloc qui est un singleton. En mathématiques, une partition d'un ensemble X est un ensemble de parties non vides de X deux à deux disjointes et dont l'union est X. Soit un ensemble X.
Théorème des nombres pentagonauxEn mathématiques, le théorème des nombres pentagonaux, dû au mathématicien suisse Euler, est le théorème qui établit le développement en série formelle de la fonction d'Euler : Autrement dit : Le nom du théorème vient de la forme des exposants dans le membre droit de l'égalité : ces nombres sont les nombres pentagonaux généralisés. Le théorème des nombres pentagonaux est un cas particulier de l'identité du triple produit de Jacobi. Ce théorème a une interprétation combinatoire en termes de partitions.
Compacité (cristallographie)En cristallographie, la compacité (ou taux de remplissage) d'un édifice cristallin, dans le modèle des sphères dures, est la fraction volumique des sphères. C'est le taux réel d'occupation de l'espace. On fait généralement le calcul dans une maille (conventionnelle) : où : est la compacité, le volume occupé par les sphères de la maille (pour les sphères dont le centre est situé à la périphérie de la maille, on ne compte que la partie de la sphère incluse dans la maille), le volume de la maille.
Réseau de LeechLe réseau de Leech est un réseau remarquable dans l'espace euclidien de dimension 24. Il est relié au code de Golay. Ernst Witt le découvre en 1940 mais ne publie pas cette découverte qui sera finalement attribuée à John Leech en 1965. Le réseau de Leech est caractérisé comme étant le seul pair en dimension 24 qui ne contient pas de racines, c'est-à-dire de vecteur v tel que (v,v)=2. Il a été construit par John Leech. Le groupe des automorphismes du réseau de Leech est le groupe de Conway Co0. Il y a exactement 24 .
Méthode des volumes finisEn analyse numérique, la méthode des volumes finis est utilisée pour résoudre numériquement des équations aux dérivées partielles, comme la méthode des différences finies et celle des éléments finis. Contrairement à la méthode des différences finies, qui met en jeu des approximations des dérivées, les méthodes des volumes finis et des éléments finis exploitent des approximations d'intégrales.
Eigenvector centralityIn graph theory, eigenvector centrality (also called eigencentrality or prestige score) is a measure of the influence of a node in a network. Relative scores are assigned to all nodes in the network based on the concept that connections to high-scoring nodes contribute more to the score of the node in question than equal connections to low-scoring nodes. A high eigenvector score means that a node is connected to many nodes who themselves have high scores. Google's PageRank and the Katz centrality are variants of the eigenvector centrality.