Christophe MoserDr. Christophe Moser is
Associate Professor of Microengineering and Industrial Relations
at the Swiss Federal Institute of Technology in Lausanne. He was the co-founder and CEO of
Ondax,Inc
for ten years prior to joining EPFL. During this decade, he raised $15 million from corporate and venture capital sources to fund volume production of thick holographic components in glass and develop devices enabled by these components such as tunable add-drop multiplexers for telecommunications, ultra-narrowband notch filters for low frequency Raman systems, high power semi-conductor frequency-narrowed pumps for fiber lasers, single frequency fixed and tunable lasers for sensing and femtosecond pulse compressors for micro-machining applications. Dr. Moser has a Ph.D. in Electrical Engineering from the California Institute of Technology, a minor in finance and a bachelor degree in Physics from EPFL.
He is the co-inventor of 24 patents, 14 peer reviewed scientific publications, 9 IEEE proceedings and a book chapter.
Private interests include tennis, running, ski, basketball and family excursions.
2010: Associate Professor, EPFL, faculty
Science Technique Ingenieur.
2000-2010: co-founder, CEO Ondax, Inc.
1995-2000: Graduate Research Assistant,
California Institute of Technology.
1993-1995: Engineering Project manager ,
TESA.
1988-1993: Bachelor candidate in Physics, EPFL.
MAIN PUBLICATIONS:
Moser C., Havermeyer F,.Ultra-narrowband tunable laserline notch filter, Appl. Phys. B, 95 (3), pp 597-601, 2009.
Moser C. ,Ho L., Havermeyer F,. Self-aligned Non-dispersive External Cavity Tunable Laser, 16 (21), 16691-16696 Optics Express, 2008.
Steckman, GJ , Moser C. et al. Volume holographic grating wavelength stabilized laser diodes, IEEE J. Of Selected Topics in Quantum Electronics, (13), 672-678, 2007.
Buse K, Havermeyer F, Liu W., Moser C, Psaltis D. Holographic Filters , Book Chapter Photorefractive Materials and their Applications, 2005.
Havermeyer, F; Liu, WH; Moser, C, et al. Volume holographic grating-based continuously tunable optical filter , Opt. Eng. 43 (9), 2017-2021, 2004.
Moser C., Maravic I., Schupp B., Adibi A, Psaltis D, Diffraction efficiency of localized holograms in doubly doped LiNbO3 crystals, Opt. Lett. 25: (17),1243-1245, 2000. Martinus GijsMartin A.M. Gijs received his degree in physics in 1981 from the Katholieke Universiteit Leuven, Belgium and his Ph.D. degree in physics at the same university in 1986. He joined the Philips Research Laboratories in Eindhoven, The Netherlands, in 1987. Subsequently, he has worked there on micro-and nano-fabrication processes of high critical temperature superconducting Josephson and tunnel junctions, the microfabrication of microstructures in magnetic multilayers showing the giant magnetoresistance effect, the design and realisation of miniaturised motors for hard disk applications and the design and realisation of planar transformers for miniaturised power applications. He joined EPFL in 1997. His present interests are in developing technologies for novel magnetic devices, new microfabrication technologies for microsystems fabrication in general and the development and use of microsystems technologies for microfluidic and biomedical applications in particular.
René SalathéRené Paul Salathé is Professor em. at EPFL since 2009. He is currently a technology consultant for several companies and he serves as an expert member of the Life Science team at the Swiss Innovation Agency (KTI/CTI) in Bern, on the scientific advisory board of the Fraunhofer-Institut für Lasertechnik ILT in Aachen, and he participates on expert panels for the Deutsche Forschungsgemeinschaft. He is a member of the Swiss Society for Optics and Microscopy, the European Optical Society, the Optical Society of America, a senior member of the IEEE, and a life time member of the Swiss Physical Society.
René Paul Salathé received the MS, PhD, and Habilitation (Privatdozent) degrees at the University of Bern in 1970, 1974, and 1979, respectively. Prior to his appointment at EPFL in 1989, he was directing the division "Material Testing and Technology" at the research and development center of the Swiss PTT. He has been active in the fields of semiconductor lasers, fibers, integrated optics, laser processing, and biomedical optics. The results of his research activities have been published more than 250 scientific contributions and 37 PhD theses at EPFL. Several start-up companies have been founded based on patents elaborated in his laboratory and/or by his PhD students. His actual research interests are in the areas of laser tweezers in micro-fluidics for biochemical applications and in optical fiber sensor applications.
Luc ThévenazLuc Thévenaz received in 1982 the M.Sc. degree in astrophysics from the Observatory of Geneva, Switzerland, and in 1988 the Ph.D. degree in physics from the University of Geneva, Switzerland. He developed at this moment his field of expertise, i.e. fibre optics. In 1988 he joined the Swiss Federal Institute of Technology of Lausanne (EPFL) where he currently leads a research group involved in photonics, namely fibre optics and optical sensing. Research topics include Brillouin-scattering fibre sensors, nonlinear fibre optics, slow & fast light and laser spectroscopy in gases. His main achievements are: - the invention of a novel configuration for distributed Brillouin fibre sensing based on a single laser source, resulting in a high intrinsic stability making for the first time field measurements possible, - the development of a photoacoustic gas trace sensor using a near infra-red semiconductor laser, detecting a gas concentration at the ppb level, - the first experimental demonstration of optically-controlled slow & fast light in optical fibres, realized at ambient temperature and operating at any wavelength since based on stimulated Brillouin scattering. The first negative group velocity of light was also realized in optical fibres using this approach. In 1991, he visited the PUC University in Rio de Janeiro, Brazil where he worked on the generation of picosecond pulses in semiconductor lasers. In 1991-1992 he stayed at Stanford University, USA, where he participated in the development of a Brillouin laser gyroscope. He joined in 1998 the company Orbisphere Laboratories SA in Neuchâtel, Switzerland, as Expert Scientist to develop gas trace sensors based on photoacoustic laser spectroscopy. In 1998 and 1999 he visited the Korea Advanced Institute of Science and Technology (KAIST) in Daejon, South Korea, where he worked on fibre laser current sensors. In 2000 he co-founded the spin-off company Omnisens that is developing and commercializing advanced photonic instrumentation. In 2007 he visited Tel Aviv University where he studied the all-optical control of polarization in optical fibres. During winter 2010 he stayed at the University of Sydney where he studied applications of stimulated Brillouin scattering in chalcogenide waveguides. In 2014 he stayed at the Polytechnic University of Valencia where he worked on microwave applications of stimulated Brillouin scattering. He was member of the Consortium in the FP7 European Project GOSPEL "Governing the speed of light", was Chairman of the European COST Action 299 "FIDES: Optical Fibres for New Challenges Facing the Information Society" and is author or co-author of some 480 publications and 12 patents. He is now Coordinator of the H2020 Marie Skłodowska-Curie Innovative Training Networks FINESSE (FIbre NErve Systems for Sensing). He is co-Executive Editor-in-Chief of the journal "Nature Light: Science & Applications" and is Member of the Editorial Board (Associate Editor) for the journal "APL Photonics" & "Laser & Photonics Reviews". He is also Fellow of both the IEEE and the Optical Society (OSA).
Roger HerschRoger D. Hersch is professor of Computer Science and head of the Peripheral Systems Laboratory at EPFL. He received his engineering degree from ETHZ in 1975, worked in industry from 1975 to 1980, and obtained his PhD degree from EPFL in 1985. He directed the widely known
Visible Human Web Server project
, which offers a number of services for the visualization of human anatomy.
His current research focuses on color reproduction, spectral color prediction models, moiré imaging, and visual document security. Recent achievements include the PhotoProtect technology, which incorporates text as chromatic differences in order to protect identity photographs (Swiss driving license), microstructure imaging, which is used by railways companies (SNCF, RENFE) and festival organizers (Paleo) to print tickets at home and the band moire imaging technology for the protection of security documents.
Nicolas GrandjeanNicolas Grandjean received a PhD degree in physics from the University ofNice Sophia Antipolis in 1994 and shortly thereafter joined the French National Center for Scientific Research (CNRS) as a permanent staff member. In 2004, he was appointed tenure-track assistant professor at the École polytechnique fédérale de Lausanne (EPFL) where he created the Laboratory for advanced semiconductors for photonics and electronics. He was promoted to full professor in 2009. He was the director of the Institute of Condensed Matter Physics from 2012 to 2016 and then moved to the University of California at Santa Barbara where he spent 6 months as a visiting professor. Since 2018, he is the head of the School of Physics at the EPFL. He was awarded the Sandoz Family Foundation Grant for Academic Promotion, received the “Nakamura Lecturer” Award in 2010, the "Quantum Devices Award” at the 2017 Compound Semiconductor Week, and “2016 best teacher” award from the EPFL Physics School. His research interests are focused on the physics of nanostructures and III-V nitride semiconductor quantum photonics.
Olivier MartinOlivier J.F. Martin received the M.Sc. and Ph.D. degrees in physics in 1989 and 1994, respectively, from the Swiss Federal Institute of Technology, Lausanne (EPFL), Switzerland. In 1989, he joined IBM Zurich Research Laboratory, where he investigated thermal and optical properties of semiconductor laser diodes. Between 1994 and 1997 he was a research staff member at the Swiss Federal Institute of Technology, Zurich (ETHZ). In 1997 he received a Lecturer fellowship from the Swiss National Science Foundation (SNSF). During the period 1996-1999, he spent a year and a half in the U.S.A., as invited scientist at the University of California in San Diego (UCSD). In 2001 he received a Professorship grant from the SNSF and became Professor of Nano-Optics at the ETHZ. In 2003, he was appointed Professor of Nanophotonics and Optical Signal Processing at the Swiss Federal Institute of Technology, Lausanne (EPFL), where he is currently head of the Nanophotonics and Metrology Laboratory and Director of the Microengineering Section.