Arnaud MagrezEducation
PhD., Materials Science, summa cum laude, Université de Nantes, 2002
M.S., Chemistry, Université des Sciences et Technologies de Lille, 1999
Academic positions
Head of the Crystal Growth Facility, EPFL, 2012-present
Research Associate, Laboratoire de Physique de la Matière Complexe, EPFL, 2003-2012
Research Fellow, Peter Grunberg Institute, FZ-Juelich, 2002-2003
Administrative positions at EPFL
Scientific staff member, EPFL Assembly, 2015-present
Scientific staff member, School Council SB, 2014-present
Member of the IPHYS office 2016-present
Member of the ICMP office 2012-2015
Member of the safety committee of ICMP 2010-2015
Johan Alexandre Philippe GaumeI started my scientific career in 2008 at the Grenoble University in the IRSTEA laboratory where I did my master's thesis on the rheology of dense granular materials using the discrete element method. In the same lab, I followed with a PhD on the numerical modeling of the release depth of extreme avalanches using a combined mechanical-statistical approach and spatial extreme statistics. In 2013 I obtained a postdoc position at the WSL Institute for Snow and Avalanche Research SLF in Davos where I was in charge of developing and applying numerical models to improve the evaluation of avalanche release conditions and thus avalanche forecasting. While my PhD was mostly theoretical and numerical, my postdoc in Davos allowed me to gain a practical expertise by participating in laboratory and field experiments which helped to validate the models I develop. In 2016, I was awarded a SNF grant to work as a research and teaching associate in CRYOS at EPFL on the multiscale modeling of snow and avalanche processes. I developed discrete approaches to model snow micro-structure deformation and failure in order to evaluate constitutive snow models to be used at a larger scale in continuum models. I also developed numerical models for wind-driven snow transport. In 2017, I was a Visiting Scholar at UCLA to work on a Material Point Method (MPM) to simulate both the initiation and propagation of snow avalanches in a unified manner. The UCLA MPM model was initially developed for the Disney movie "Frozen" and has been modified and enriched based on Critical State Soil Mechanics to model the release and flow of slab avalanches. The results of this collaboration have been published in Nature Communications. In 2018, I was awarded the SNF Eccellenza Professorial Fellowship and became professor at EPFL and head of SLAB, the Snow and Avalanche Simulation Laboratory. At SLAB, we study micro-mechanical failure and fracture propagation of porous brittle solids, with applications in snow slab avalanche release. We also simulate avalanche dynamics and flow regime transitions over complex 3D terrain through the development of new models (depth-resolved and depth-averaged) based on MPM.In 2020, I obtained a SPARK grant to develop a new approach to simulate and better understand complex process chains in gravitational mass movements, including permafrost instabilities, rock, snow and ice avalanches and transitions to debris flows.
Martinus GijsMartin A.M. Gijs received his degree in physics in 1981 from the Katholieke Universiteit Leuven, Belgium and his Ph.D. degree in physics at the same university in 1986. He joined the Philips Research Laboratories in Eindhoven, The Netherlands, in 1987. Subsequently, he has worked there on micro-and nano-fabrication processes of high critical temperature superconducting Josephson and tunnel junctions, the microfabrication of microstructures in magnetic multilayers showing the giant magnetoresistance effect, the design and realisation of miniaturised motors for hard disk applications and the design and realisation of planar transformers for miniaturised power applications. He joined EPFL in 1997. His present interests are in developing technologies for novel magnetic devices, new microfabrication technologies for microsystems fabrication in general and the development and use of microsystems technologies for microfluidic and biomedical applications in particular.
Alcherio MartinoliI received my Diploma in Electrical Engineering from the Swiss Federal Institute of Technology in Zurich (ETHZ), and a Ph.D. in Computer Science from the Swiss Federal Institute of Technology in Lausanne (EPFL). I am currently an Associate Professor at the School of Architecture, Civil, and Environmental Engineering and the head of the Distributed Intelligent Systems and Algorithms Laboratory. Before joining EPFL I carried out research activities at the Institute of Biomedical Engineering of the ETHZ, at the Institute of Industrial Automation of the Spanish Research Council in Madrid, Spain, and at the California Institute of Technology, Pasadena, U.S.A. Additional information can be found on my full CV.
Katrin BeyerSince 2017 Associate Professor, School of Architecture, Civil and Environmental Engineering (ENAC), EPFL. Head of the Earthquake Engineering and Structural Dynamics (EESD) Laboratory
2010-2017 Assistant Professor, EPFL.
2008-2010 Post-doctoral researcher, ETH Zürich.
2003-2007 Ph.D., Roseschool / Università di Pavia, Italy.
2001-2003 Ove Arup & Partners, Advanced Technology and Research Group, London.
2001 Diploma, Civil engineering, ETH Zürich.
Benoît Jean Dominique FerrariDr. Benoît J.D. Ferrari studied Biochemistry and Biology and completed his PhD in Ecotoxicology at the University of Lorraine (Metz, France) in 2000. After several years at the University of Geneva (Forel F.A. Institute, Geneva, Switzerland; 2002-2008) and Irstea (Formerly Cemagref, Lyon, France; 2000-2002 and 2008-2013), he joined the Swiss Centre of Applied Ecotoxicology (Centre Ecotox Eawag/EPFL) in October 2013 as group leader of the soil and sediment ecotoxicology group at Lausanne. During his different mandates, he was implied as (co-)proponent in different research projects supported e.g. by the Swiss Federal Office for the Environment, the Swiss National Science Foundation, the French National Research Agency or the European Framework Programme for Research. His main areas of interest cover the ecodynamic of contaminants and their impact on the ecophysiology of organisms. Particularly, he is involved in 1) the development of exposure and effect indicators to evaluate the chemical stresses, 2) the integration of such indicators in laboratory- and field-based approaches to assess the quality of aquatic ecosystems, 3) the development of adapted bioassays for active biomonitoring, and 4) the transfer of such ecotoxicological tools and approaches towards end-users.