Meta-optimizationIn numerical optimization, meta-optimization is the use of one optimization method to tune another optimization method. Meta-optimization is reported to have been used as early as in the late 1970s by Mercer and Sampson for finding optimal parameter settings of a genetic algorithm. Meta-optimization and related concepts are also known in the literature as meta-evolution, super-optimization, automated parameter calibration, hyper-heuristics, etc.
Tierra (computer simulation)Tierra is a computer simulation developed by ecologist Thomas S. Ray in the early 1990s in which computer programs compete for time (central processing unit (CPU) time) and space (access to main memory). In this context, the computer programs in Tierra are considered to be evolvable and can mutate, self-replicate and recombine. Tierra's virtual machine is written in C. It operates on a custom instruction set designed to facilitate code changes and reordering, including features such as jump to template (as opposed to the relative or absolute jumps common to most instruction sets).
Nurse scheduling problemThe nurse scheduling problem (NSP), also called the nurse rostering problem (NRP), is the operations research problem of finding an optimal way to assign nurses to shifts, typically with a set of hard constraints which all valid solutions must follow, and a set of soft constraints which define the relative quality of valid solutions. Solutions to the nurse scheduling problem can be applied to constrained scheduling problems in other fields. The nurse scheduling problem has been studied since before 1969, and is known to have NP-hard complexity.
Symbolic regressionSymbolic regression (SR) is a type of regression analysis that searches the space of mathematical expressions to find the model that best fits a given dataset, both in terms of accuracy and simplicity. No particular model is provided as a starting point for symbolic regression. Instead, initial expressions are formed by randomly combining mathematical building blocks such as mathematical operators, analytic functions, constants, and state variables.
Exploration-exploitation dilemmaThe exploration-exploitation dilemma, also known as the explore-exploit tradeoff, is a fundamental concept in decision-making that arises in many domains. It is depicted as the balancing act between two opposing strategies. Exploitation involves choosing the best-known option based on past experiences, while exploration involves trying out new options that may lead to better outcomes in the future. Finding the optimal balance between these two strategies is a crucial challenge in many decision-making situations, where the goal is to maximize long-term benefits.
Vehicle routing problemThe vehicle routing problem (VRP) is a combinatorial optimization and integer programming problem which asks "What is the optimal set of routes for a fleet of vehicles to traverse in order to deliver to a given set of customers?" It generalises the travelling salesman problem (TSP). It first appeared in a paper by George Dantzig and John Ramser in 1959, in which the first algorithmic approach was written and was applied to petrol deliveries. Often, the context is that of delivering goods located at a central depot to customers who have placed orders for such goods.
Cross-entropy methodThe cross-entropy (CE) method is a Monte Carlo method for importance sampling and optimization. It is applicable to both combinatorial and continuous problems, with either a static or noisy objective. The method approximates the optimal importance sampling estimator by repeating two phases: Draw a sample from a probability distribution. Minimize the cross-entropy between this distribution and a target distribution to produce a better sample in the next iteration.
Universal DarwinismUniversal Darwinism, also known as generalized Darwinism, universal selection theory, or Darwinian metaphysics, is a variety of approaches that extend the theory of Darwinism beyond its original domain of biological evolution on Earth. Universal Darwinism aims to formulate a generalized version of the mechanisms of variation, selection and heredity proposed by Charles Darwin, so that they can apply to explain evolution in a wide variety of other domains, including psychology, linguistics, economics, culture, medicine, computer science, and physics.
Multidisciplinary design optimizationMulti-disciplinary design optimization (MDO) is a field of engineering that uses optimization methods to solve design problems incorporating a number of disciplines. It is also known as multidisciplinary system design optimization (MSDO), and Multidisciplinary Design Analysis and Optimization (MDAO). MDO allows designers to incorporate all relevant disciplines simultaneously. The optimum of the simultaneous problem is superior to the design found by optimizing each discipline sequentially, since it can exploit the interactions between the disciplines.
Genetic representationIn computer programming, genetic representation is a way of presenting solutions/individuals in evolutionary computation methods. The term encompasses both the concrete data structures and data types used to realize the genetic material of the candidate solutions in the form of a genome, and the relationships between search space and problem space. In the simplest case, the search space corresponds to the problem space (direct representation).