Meta-optimizationIn numerical optimization, meta-optimization is the use of one optimization method to tune another optimization method. Meta-optimization is reported to have been used as early as in the late 1970s by Mercer and Sampson for finding optimal parameter settings of a genetic algorithm. Meta-optimization and related concepts are also known in the literature as meta-evolution, super-optimization, automated parameter calibration, hyper-heuristics, etc.
Tierra (simulation informatique)Tierra est une simulation informatique créée et développée par Thomas S. Ray pour l'étude de la vie artificielle. Ray, T. S. 1991, "Evolution and optimization of digital organisms", in Billingsley K.R. et al (eds), Scientific Excellence in Supercomputing: The IBM 1990 Contest Prize Papers, Athens, GA, 30602: The Baldwin Press, The University of Georgia. Publication date: December 1991, pp. 489–531. Bedau M.A., McCaskill J.S. et al., "Open problems in artificial life", Artificial Life, 2000 Fall 6(4):363-76.
Nurse scheduling problemThe nurse scheduling problem (NSP), also called the nurse rostering problem (NRP), is the operations research problem of finding an optimal way to assign nurses to shifts, typically with a set of hard constraints which all valid solutions must follow, and a set of soft constraints which define the relative quality of valid solutions. Solutions to the nurse scheduling problem can be applied to constrained scheduling problems in other fields. The nurse scheduling problem has been studied since before 1969, and is known to have NP-hard complexity.
Symbolic regressionSymbolic regression (SR) is a type of regression analysis that searches the space of mathematical expressions to find the model that best fits a given dataset, both in terms of accuracy and simplicity. No particular model is provided as a starting point for symbolic regression. Instead, initial expressions are formed by randomly combining mathematical building blocks such as mathematical operators, analytic functions, constants, and state variables.
Exploration-exploitation dilemmaThe exploration-exploitation dilemma, also known as the explore-exploit tradeoff, is a fundamental concept in decision-making that arises in many domains. It is depicted as the balancing act between two opposing strategies. Exploitation involves choosing the best-known option based on past experiences, while exploration involves trying out new options that may lead to better outcomes in the future. Finding the optimal balance between these two strategies is a crucial challenge in many decision-making situations, where the goal is to maximize long-term benefits.
Problème de tournées de véhiculesvignette|Figure illustrant une des solutions d'un problème de tournées avec un dépôt central et 3 véhicules disponibles. Le problème de tournées de véhicules (aussi appelé VRP pour Vehicle Routing Problem) est une classe de problèmes de recherche opérationnelle et d'optimisation combinatoire. Il s'agit de déterminer les tournées d'une flotte de véhicules afin de livrer une liste de clients, ou de réaliser des tournées d'interventions (maintenance, réparation, contrôles) ou de visites (visites médicales, commerciales).
Méthode de l'entropie croiséeLa méthode de l'entropie-croisée (CE) attribuée à Reuven Rubinstein est une méthode générale d'optimisation de type Monte-Carlo, combinatoire ou continue, et d'échantillonnage préférentiel. La méthode a été conçue à l'origine pour la simulation d'événements rares, où des densités de probabilité très faibles doivent être estimées correctement, par exemple dans l'analyse de la sécurité des réseaux, les modèles de , ou l'analyse des performances des systèmes de télécommunication.
Universal DarwinismUniversal Darwinism, also known as generalized Darwinism, universal selection theory, or Darwinian metaphysics, is a variety of approaches that extend the theory of Darwinism beyond its original domain of biological evolution on Earth. Universal Darwinism aims to formulate a generalized version of the mechanisms of variation, selection and heredity proposed by Charles Darwin, so that they can apply to explain evolution in a wide variety of other domains, including psychology, linguistics, economics, culture, medicine, computer science, and physics.
Optimisation multidisciplinaireL'Optimisation de Conception Multidisciplinaire (OMD ou MDO, Multidisciplinary Design Optimisation, en anglais) est un domaine d'ingénierie qui utilise des méthodes d'optimisation afin de résoudre des problèmes de conception mettant en œuvre plusieurs disciplines. La MDO permet aux concepteurs d'incorporer les effets de chacune des disciplines en même temps. L'optimum global ainsi trouvé est meilleur que la configuration trouvée en optimisant chaque discipline indépendamment des autres, car l'on prend en compte les interactions entre les disciplines.
Genetic representationIn computer programming, genetic representation is a way of presenting solutions/individuals in evolutionary computation methods. The term encompasses both the concrete data structures and data types used to realize the genetic material of the candidate solutions in the form of a genome, and the relationships between search space and problem space. In the simplest case, the search space corresponds to the problem space (direct representation).