Network schedulerA network scheduler, also called packet scheduler, queueing discipline (qdisc) or queueing algorithm, is an arbiter on a node in a packet switching communication network. It manages the sequence of network packets in the transmit and receive queues of the protocol stack and network interface controller. There are several network schedulers available for the different operating systems, that implement many of the existing network scheduling algorithms. The network scheduler logic decides which network packet to forward next.
Traffic shapingTraffic shaping is a bandwidth management technique used on computer networks which delays some or all datagrams to bring them into compliance with a desired traffic profile. Traffic shaping is used to optimize or guarantee performance, improve latency, or increase usable bandwidth for some kinds of packets by delaying other kinds. It is often confused with traffic policing, the distinct but related practice of packet dropping and packet marking. The most common type of traffic shaping is application-based traffic shaping.
Computer networkA computer network is a set of computers sharing resources located on or provided by network nodes. Computers use common communication protocols over digital interconnections to communicate with each other. These interconnections are made up of telecommunication network technologies based on physically wired, optical, and wireless radio-frequency methods that may be arranged in a variety of network topologies. The nodes of a computer network can include personal computers, servers, networking hardware, or other specialized or general-purpose hosts.
Bandwidth managementBandwidth management is the process of measuring and controlling the communications (traffic, packets) on a network link, to avoid filling the link to capacity or overfilling the link, which would result in network congestion and poor performance of the network. Bandwidth is described by bit rate and measured in units of bits per second (bit/s) or bytes per second (B/s).
Leaky bucketThe leaky bucket is an algorithm based on an analogy of how a bucket with a constant leak will overflow if either the average rate at which water is poured in exceeds the rate at which the bucket leaks or if more water than the capacity of the bucket is poured in all at once. It can be used to determine whether some sequence of discrete events conforms to defined limits on their average and peak rates or frequencies, e.g. to limit the actions associated with these events to these rates or delay them until they do conform to the rates.
Rate limitingIn computer networks, rate limiting is used to control the rate of requests sent or received by a network interface controller. It can be used to prevent DoS attacks and limit web scraping. Research indicates flooding rates for one zombie machine are in excess of 20 HTTP GET requests per second, legitimate rates much less. Hardware appliances can limit the rate of requests on layer 4 or 5 of the OSI model. Rate limiting can be induced by the network protocol stack of the sender due to a received ECN-marked packet and also by the network scheduler of any router along the way.
Token bucketThe token bucket is an algorithm used in packet-switched and telecommunications networks. It can be used to check that data transmissions, in the form of packets, conform to defined limits on bandwidth and burstiness (a measure of the unevenness or variations in the traffic flow). It can also be used as a scheduling algorithm to determine the timing of transmissions that will comply with the limits set for the bandwidth and burstiness: see network scheduler.
Traffic policing (communications)In communications, traffic policing is the process of monitoring network traffic for compliance with a traffic contract and taking steps to enforce that contract. Traffic sources which are aware of a traffic contract may apply traffic shaping to ensure their output stays within the contract and is thus not discarded. Traffic exceeding a traffic contract may be discarded immediately, marked as non-compliant, or left as-is, depending on administrative policy and the characteristics of the excess traffic.
Differentiated servicesDifferentiated services or DiffServ is a computer networking architecture that specifies a mechanism for classifying and managing network traffic and providing quality of service (QoS) on modern IP networks. DiffServ can, for example, be used to provide low-latency to critical network traffic such as voice or streaming media while providing best-effort service to non-critical services such as web traffic or s. DiffServ uses a 6-bit differentiated services code point (DSCP) in the 8-bit differentiated services field (DS field) in the IP header for packet classification purposes.
Traffic contractIf a network service (or application) wishes to use a broadband network (an ATM network in particular) to transport a particular kind of traffic, it must first inform the network about what kind of traffic is to be transported, and the performance requirements of that traffic. The application presents this information to the network in the form of a traffic contract. When a connection is requested by an application, the application indicates to the network: The Type of Service required.