Category

Non-classical logic

Related concepts (21)
Multimodal logic
A multimodal logic is a modal logic that has more than one primitive modal operator. They find substantial applications in theoretical computer science. A modal logic with n primitive unary modal operators is called an n-modal logic. Given these operators and negation, one can always add modal operators defined as if and only if . Perhaps the first substantive example of a two-modal logic is Arthur Prior's tense logic, with two modalities, F and P, corresponding to "sometime in the future" and "sometime in the past".
Doxastic logic
Doxastic logic is a type of logic concerned with reasoning about beliefs. The term derives from the Ancient Greek (doxa, "opinion, belief"), from which the English term doxa ("popular opinion or belief") is also borrowed. Typically, a doxastic logic uses the notation to mean "It is believed that is the case", and the set denotes a set of beliefs. In doxastic logic, belief is treated as a modal operator. There is complete parallelism between a person who believes propositions and a formal system that derives propositions.
Deontic logic
Deontic logic is the field of philosophical logic that is concerned with obligation, permission, and related concepts. Alternatively, a deontic logic is a formal system that attempts to capture the essential logical features of these concepts. It can be used to formalize imperative logic, or directive modality in natural languages. Typically, a deontic logic uses OA to mean it is obligatory that A (or it ought to be (the case) that A), and PA to mean it is permitted (or permissible) that A, which is defined as .
Classical modal logic
In modal logic, a classical modal logic L is any modal logic containing (as axiom or theorem) the duality of the modal operators that is also closed under the rule Alternatively, one can give a dual definition of L by which L is classical if and only if it contains (as axiom or theorem) and is closed under the rule The weakest classical system is sometimes referred to as E and is non-normal. Both algebraic and neighborhood semantics characterize familiar classical modal systems that are weaker than the weakest normal modal logic K.
Subjunctive possibility
Subjunctive possibility (also called alethic possibility) is a form of modality studied in modal logic. Subjunctive possibilities are the sorts of possibilities considered when conceiving counterfactual situations; subjunctive modalities are modalities that bear on whether a statement might have been or could be true—such as might, could, must, possibly, necessarily, contingently, essentially, accidentally, and so on. Subjunctive possibilities include logical possibility, metaphysical possibility, nomological possibility, and temporal possibility.
Fuzzy set operations
Fuzzy set operations are a generalization of crisp set operations for fuzzy sets. There is in fact more than one possible generalization. The most widely used operations are called standard fuzzy set operations; they comprise: fuzzy complements, fuzzy intersections, and fuzzy unions. Let A and B be fuzzy sets that A,B ⊆ U, u is any element (e.g. value) in the U universe: u ∈ U. Standard complement The complement is sometimes denoted by ∁A or A∁ instead of ¬A.
Relevance logic
Relevance logic, also called relevant logic, is a kind of non-classical logic requiring the antecedent and consequent of implications to be relevantly related. They may be viewed as a family of substructural or modal logics. It is generally, but not universally, called relevant logic by British and, especially, Australian logicians, and relevance logic by American logicians. Relevance logic aims to capture aspects of implication that are ignored by the "material implication" operator in classical truth-functional logic, namely the notion of relevance between antecedent and conditional of a true implication.
Presupposition
In the branch of linguistics known as pragmatics, a presupposition (or PSP) is an implicit assumption about the world or background belief relating to an utterance whose truth is taken for granted in discourse. Examples of presuppositions include: Jane no longer writes fiction. Presupposition: Jane once wrote fiction. Have you stopped eating meat? Presupposition: you had once eaten meat. Have you talked to Hans? Presupposition: Hans exists.
Type-2 fuzzy sets and systems
Type-2 fuzzy sets and systems generalize standard Type-1 fuzzy sets and systems so that more uncertainty can be handled. From the beginning of fuzzy sets, criticism was made about the fact that the membership function of a type-1 fuzzy set has no uncertainty associated with it, something that seems to contradict the word fuzzy, since that word has the connotation of much uncertainty. So, what does one do when there is uncertainty about the value of the membership function? The answer to this question was provided in 1975 by the inventor of fuzzy sets, Lotfi A.
Temporal logic
In logic, temporal logic is any system of rules and symbolism for representing, and reasoning about, propositions qualified in terms of time (for example, "I am always hungry", "I will eventually be hungry", or "I will be hungry until I eat something"). It is sometimes also used to refer to tense logic, a modal logic-based system of temporal logic introduced by Arthur Prior in the late 1950s, with important contributions by Hans Kamp. It has been further developed by computer scientists, notably Amir Pnueli, and logicians.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.