Category

Physical constants

A physical constant, sometimes fundamental physical constant or universal constant, is a physical quantity that is generally believed to be both universal in nature and have constant value in time. It is distinct from a mathematical constant, which has a fixed numerical value, but does not directly involve any physical measurement. There are many physical constants in science, some of the most widely recognized being the speed of light in vacuum c, the gravitational constant G, the Planck constant h, the electric constant ε0, and the elementary charge e. Physical constants can take many dimensional forms: the speed of light signifies a maximum speed for any object and its dimension is length divided by time; while the proton-to-electron mass ratio, is dimensionless. The term "fundamental physical constant" is sometimes used to refer to universal-but-dimensioned physical constants such as those mentioned above. Increasingly, however, physicists reserve the expression for the narrower case of dimensionless universal physical constants, such as the fine-structure constant α, which characterizes the strength of the electromagnetic interaction. Physical constant, as discussed here, should not be confused with other quantities called "constants", which are coefficients or parameters assumed to be constant in a given context without being fundamental, such as the "time constant" characteristic of a given system, or material constants (e.g., Madelung constant, electrical resistivity, and heat capacity). Since May 2019, all of the SI base units have been redefined in terms of seven SI defining constants. As a result, five constants have known exact numerical values when expressed in SI units: the speed of light in vacuum, c; the Planck constant, h; the elementary charge, e; the Avogadro constant, NA; and the Boltzmann constant, kB. The first three of these constants are fundamental constants, whereas NA and kB are of a technical nature only: they do not describe any property of the universe, but instead only give a proportionality factor for defining the units used with large numbers of atomic-scale entities.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related categories (34)
Topics in physical quantities
A physical quantity (or simply quantity) is a property of a material or system that can be quantified by measurement. A physical quantity can be expressed as a value, which is the algebraic multiplication of a numerical value and a unit of measurement. For example, the physical quantity mass, symbol m, can be quantified as m=n kg, where n is the numerical value and kg is the unit symbol (for kilogram). Following ISO 80000-1, any value or magnitude of a physical quantity is expressed as a comparison to a unit of that quantity.
Topics in atomic physics
Atomic physics is the field of physics that studies atoms as an isolated system of electrons and an atomic nucleus. Atomic physics typically refers to the study of atomic structure and the interaction between atoms. It is primarily concerned with the way in which electrons are arranged around the nucleus and the processes by which these arrangements change. This comprises ions, neutral atoms and, unless otherwise stated, it can be assumed that the term atom includes ions.
Topics in quantum mechanics
Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, quantum field theory, quantum technology, and quantum information science. Classical physics, the collection of theories that existed before the advent of quantum mechanics, describes many aspects of nature at an ordinary (macroscopic) scale, but is not sufficient for describing them at small (atomic and subatomic) scales.
Show more
Related concepts (15)
Natural units
In physics, natural units are physical units of measurement in which only universal physical constants are used as defining constants, such that each of these constants acts as a coherent unit of a quantity. For example, the elementary charge e may be used as a natural unit of electric charge, and the speed of light c may be used as a natural unit of speed. A purely natural system of units has all of its units defined such that each of these can be expressed as a product of powers of defining physical constants.
Hartree atomic units
The Hartree atomic units are a system of natural units of measurement which is especially convenient for calculations in atomic physics and related scientific fields, such as computational chemistry and atomic spectroscopy. They are named after the physicist Douglas Hartree. Atomic units are often abbreviated "a.u." or "au", not to be confused with the same abbreviation used also for astronomical units, arbitrary units, and absorbance units in other contexts.
Elementary charge
The elementary charge, usually denoted by or , is the electric charge carried by a single proton or, equivalently, the magnitude of the negative electric charge carried by a single electron, which has charge −1 . The symbol e has another useful mathematical meaning due to which its use as label for elementary charge is avoided in theoretical physics. For example, in quantum mechanics one wants to be able to write compactly plane waves with the use of Euler's number .
Show more
Related courses (2)
MSE-101(a): Materials:from chemistry to properties
Ce cours permet l'acquisition des notions essentielles relatives à la structure de la matière, aux équilibres et à la réactivité chimique en liaison avec les propriétés mécaniques, thermiques, électri
PHYS-100: Advanced physics I (mechanics)
La Physique Générale I (avancée) couvre la mécanique du point et du solide indéformable. Apprendre la mécanique, c'est apprendre à mettre sous forme mathématique un phénomène physique, en modélisant l
Related lectures (10)
Chemistry: Atomic Structure and Thermodynamics
Covers atomic structure, thermodynamics, material properties, and ideal gas law.
Quantum Mechanics Basics: Atomic Units and Operators
Introduces atomic units, operators, and the postulates of quantum mechanics.
Electric Fields and Currents
Explores electric fields, energy storage, charge displacement, DC currents, and historical aspects of electricity.
Show more
Related publications (14)

Type and Elementary Structure: The Anthropological Turn

Jolanda Devalle

As Vidler suggests, the Third Typology’s radical proposition was to identify the nature of architectural elements as neither scientific nor technical but essentially architectural. For Martí Arís, this ‘essence’ of architecture is rooted in form-making, th ...
2023

Advances in Magnetics Roadmap on Spin-Wave Computing

Qian Wang, Yiming Li, Dirk Grundler, Xiuwei Zhang

Magnonics addresses the physical properties of spin waves and utilizes them for data processing. Scalability down to atomic dimensions, operation in the GHz-to-THz frequency range, utilization of nonlinear and nonreciprocal phenomena, and compatibility wit ...
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2022

Charging and ion ejection dynamics of large helium nanodroplets exposed to intense femtosecond soft X-ray pulses

Christoph Bostedt, Camila Bacellar Cases Da Silveira, Daniela Rupp

Ion ejection from charged helium nanodroplets exposed to intense femtosecond soft X-ray pulses is studied by single-pulse ion time-of-flight (TOF) spectroscopy in coincidence with small-angle X-ray scattering. Scattering images encode the droplet size and ...
SPRINGER HEIDELBERG2021
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.