Privacy-enhancing technologies (PET) are technologies that embody fundamental data protection principles by minimizing personal data use, maximizing data security, and empowering individuals. PETs allow online users to protect the privacy of their personally identifiable information (PII), which is often provided to and handled by services or applications. PETs use techniques to minimize an information system's possession of personal data without losing functionality. Generally speaking, PETs can be categorized as hard and soft privacy technologies.
The objective of PETs is to protect personal data and assure technology users of two key privacy points: their own information is kept confidential, and management of data protection is a priority to the organizations who hold responsibility for any PII. PETs allow users to take one or more of the following actions related to personal data that is sent to and used by online service providers, merchants or other users (this control is known as self-determination). PETs aim to minimize personal data collected and used by service providers and merchants, use pseudonyms or anonymous data credentials to provide anonymity, and strive to achieve informed consent about giving personal data to online service providers and merchants. In Privacy Negotiations, consumers and service providers establish, maintain, and refine privacy policies as individualized agreements through the ongoing choice among service alternatives, therefore providing the possibility to negotiate the terms and conditions of giving personal data to online service providers and merchants (data handling/privacy policy negotiation). Within private negotiations, the transaction partners may additionally bundle the personal information collection and processing schemes with monetary or non-monetary rewards.
PETs provide the possibility to remotely audit the enforcement of these terms and conditions at the online service providers and merchants (assurance), allow users to log, archive and look up past transfers of their personal data, including what data has been transferred, when, to whom and under what conditions, and facilitate the use of their legal rights of data inspection, correction and deletion.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Shamir's secret sharing (SSS) is an efficient secret sharing algorithm for distributing private information (the "secret") among a group so that the secret cannot be revealed unless a quorum of the group acts together to pool their knowledge. To achieve this, the secret is mathematically divided into parts (the "shares") from which the secret can be reassembled only when a sufficient number of shares are combined.
Provable security refers to any type or level of computer security that can be proved. It is used in different ways by different fields. Usually, this refers to mathematical proofs, which are common in cryptography. In such a proof, the capabilities of the attacker are defined by an adversarial model (also referred to as attacker model): the aim of the proof is to show that the attacker must solve the underlying hard problem in order to break the security of the modelled system.
In cryptography, a private information retrieval (PIR) protocol is a protocol that allows a user to retrieve an item from a server in possession of a database without revealing which item is retrieved. PIR is a weaker version of 1-out-of-n oblivious transfer, where it is also required that the user should not get information about other database items. One trivial, but very inefficient way to achieve PIR is for the server to send an entire copy of the database to the user.
This advanced course will provide students with the knowledge to tackle the design of privacy-preserving ICT systems. Students will learn about existing technologies to prect privacy, and how to evalu
This course reviews some failure cases in public-key cryptography. It introduces some cryptanalysis techniques. It also presents fundamentals in cryptography such as interactive proofs. Finally, it pr
The goal of the course is to introduce basic notions from public key cryptography (PKC) as well as basic number-theoretic methods and algorithms for cryptanalysis of protocols and schemes based on PKC
Active in data privacy, secure collaboration and regulatory compliance. Inpher pioneers cryptographic technology for secure data collaboration, accurate insights, and regulatory compliance, trusted by global innovators.
Public-key cryptography, or asymmetric cryptography, is the field of cryptographic systems that use pairs of related keys. Each key pair consists of a public key and a corresponding private key. Key pairs are generated with cryptographic algorithms based on mathematical problems termed one-way functions. Security of public-key cryptography depends on keeping the private key secret; the public key can be openly distributed without compromising security.
In theoretical computer science and mathematics, computational complexity theory focuses on classifying computational problems according to their resource usage, and relating these classes to each other. A computational problem is a task solved by a computer. A computation problem is solvable by mechanical application of mathematical steps, such as an algorithm. A problem is regarded as inherently difficult if its solution requires significant resources, whatever the algorithm used.
A web framework (WF) or web application framework (WAF) is a software framework that is designed to support the development of web applications including web services, web resources, and web APIs. Web frameworks provide a standard way to build and deploy web applications on the World Wide Web. Web frameworks aim to automate the overhead associated with common activities performed in web development. For example, many web frameworks provide libraries for database access, templating frameworks, and session management, and they often promote code reuse.
Introduces Secure Multiparty Computation techniques, covering theoretical frameworks, security models, and practical applications in privacy-preserving cryptography.
Explores privacy-preserving authentication methods, zero-knowledge proofs, Schnorr's proof of identification, and their real-world applications.
Explores privacy-preserving techniques like secret sharing and homomorphic encryption for secure computations and data protection in machine learning.
Since the advent of internet and mass communication, two public-key cryptographic algorithms have shared the monopoly of data encryption and authentication: Diffie-Hellman and RSA. However, in the last few years, progress made in quantum physics -- and mor ...
Billions of people now have conversations daily over the Internet. A large portion of this communication takes place via secure messaging protocols that offer "end-to-end encryption'" guarantees and resilience to compromise like the widely-used Double Ratc ...
Distributed constraint optimization (DCOP) is a framework in which multiple agents with private constraints (or preferences) cooperate to achieve a common goal optimally. DCOPs are applicable in several multi-agent coordination/allocation problems, such as ...