Conditional probability distributionIn probability theory and statistics, given two jointly distributed random variables and , the conditional probability distribution of given is the probability distribution of when is known to be a particular value; in some cases the conditional probabilities may be expressed as functions containing the unspecified value of as a parameter. When both and are categorical variables, a conditional probability table is typically used to represent the conditional probability.
Queueing theoryQueueing theory is the mathematical study of waiting lines, or queues. A queueing model is constructed so that queue lengths and waiting time can be predicted. Queueing theory is generally considered a branch of operations research because the results are often used when making business decisions about the resources needed to provide a service. Queueing theory has its origins in research by Agner Krarup Erlang, who created models to describe the system of incoming calls at the Copenhagen Telephone Exchange Company.
Marginal distributionIn probability theory and statistics, the marginal distribution of a subset of a collection of random variables is the probability distribution of the variables contained in the subset. It gives the probabilities of various values of the variables in the subset without reference to the values of the other variables. This contrasts with a conditional distribution, which gives the probabilities contingent upon the values of the other variables. Marginal variables are those variables in the subset of variables being retained.
Inverse Gaussian distributionIn probability theory, the inverse Gaussian distribution (also known as the Wald distribution) is a two-parameter family of continuous probability distributions with support on (0,∞). Its probability density function is given by for x > 0, where is the mean and is the shape parameter. The inverse Gaussian distribution has several properties analogous to a Gaussian distribution.
Transition kernelIn the mathematics of probability, a transition kernel or kernel is a function in mathematics that has different applications. Kernels can for example be used to define random measures or stochastic processes. The most important example of kernels are the Markov kernels. Let , be two measurable spaces. A function is called a (transition) kernel from to if the following two conditions hold: For any fixed , the mapping is -measurable; For every fixed , the mapping is a measure on .
Discrete-event simulationA discrete-event simulation (DES) models the operation of a system as a (discrete) sequence of events in time. Each event occurs at a particular instant in time and marks a change of state in the system. Between consecutive events, no change in the system is assumed to occur; thus the simulation time can directly jump to the occurrence time of the next event, which is called next-event time progression.
Feynman–Kac formulaThe Feynman–Kac formula, named after Richard Feynman and Mark Kac, establishes a link between parabolic partial differential equations (PDEs) and stochastic processes. In 1947, when Kac and Feynman were both Cornell faculty, Kac attended a presentation of Feynman's and remarked that the two of them were working on the same thing from different directions. The Feynman–Kac formula resulted, which proves rigorously the real case of Feynman's path integrals. The complex case, which occurs when a particle's spin is included, is still an open question.
Skorokhod's representation theoremIn mathematics and statistics, Skorokhod's representation theorem is a result that shows that a weakly convergent sequence of probability measures whose limit measure is sufficiently well-behaved can be represented as the distribution/law of a pointwise convergent sequence of random variables defined on a common probability space. It is named for the Soviet mathematician A. V. Skorokhod. Let be a sequence of probability measures on a metric space such that converges weakly to some probability measure on as .
Hitting timeIn the study of stochastic processes in mathematics, a hitting time (or first hit time) is the first time at which a given process "hits" a given subset of the state space. Exit times and return times are also examples of hitting times. Let T be an ordered index set such as the natural numbers, \N, the non-negative real numbers, [0, +∞), or a subset of these; elements t \in T can be thought of as "times". Given a probability space (Ω, Σ, Pr) and a measurable state space S, let be a stochastic process, and let A be a measurable subset of the state space S.
Optimal stoppingIn mathematics, the theory of optimal stopping or early stopping is concerned with the problem of choosing a time to take a particular action, in order to maximise an expected reward or minimise an expected cost. Optimal stopping problems can be found in areas of statistics, economics, and mathematical finance (related to the pricing of American options). A key example of an optimal stopping problem is the secretary problem. Optimal stopping problems can often be written in the form of a Bellman equation, and are therefore often solved using dynamic programming.