Steiner systemIn combinatorial mathematics, a Steiner system (named after Jakob Steiner) is a type of block design, specifically a t-design with λ = 1 and t = 2 or (recently) t ≥ 2. A Steiner system with parameters t, k, n, written S(t,k,n), is an n-element set S together with a set of k-element subsets of S (called blocks) with the property that each t-element subset of S is contained in exactly one block. In an alternate notation for block designs, an S(t,k,n) would be a t-(n,k,1) design. This definition is relatively new.
Affine spaceIn mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties related to parallelism and ratio of lengths for parallel line segments. In an affine space, there is no distinguished point that serves as an origin. Hence, no vector has a fixed origin and no vector can be uniquely associated to a point.
Linear fractional transformationIn mathematics, a linear fractional transformation is, roughly speaking, an invertible transformation of the form The precise definition depends on the nature of a, b, c, d, and z. In other words, a linear fractional transformation is a transformation that is represented by a fraction whose numerator and denominator are linear. In the most basic setting, a, b, c, d, and z are complex numbers (in which case the transformation is also called a Möbius transformation), or more generally elements of a field.
CollineationIn projective geometry, a collineation is a one-to-one and onto map (a bijection) from one projective space to another, or from a projective space to itself, such that the of collinear points are themselves collinear. A collineation is thus an isomorphism between projective spaces, or an automorphism from a projective space to itself. Some authors restrict the definition of collineation to the case where it is an automorphism. The set of all collineations of a space to itself form a group, called the collineation group.
Brianchon's theoremIn geometry, Brianchon's theorem is a theorem stating that when a hexagon is circumscribed around a conic section, its principal diagonals (those connecting opposite vertices) meet in a single point. It is named after Charles Julien Brianchon (1783–1864). Let be a hexagon formed by six tangent lines of a conic section. Then lines (extended diagonals each connecting opposite vertices) intersect at a single point , the Brianchon point. The polar reciprocal and projective dual of this theorem give Pascal's theorem.
Fubini–Study metricIn mathematics, the Fubini–Study metric is a Kähler metric on projective Hilbert space, that is, on a complex projective space CPn endowed with a Hermitian form. This metric was originally described in 1904 and 1905 by Guido Fubini and Eduard Study. A Hermitian form in (the vector space) Cn+1 defines a unitary subgroup U(n+1) in GL(n+1,C). A Fubini–Study metric is determined up to homothety (overall scaling) by invariance under such a U(n+1) action; thus it is homogeneous. Equipped with a Fubini–Study metric, CPn is a symmetric space.
Cayley–Bacharach theoremIn mathematics, the Cayley–Bacharach theorem is a statement about cubic curves (plane curves of degree three) in the projective plane P2. The original form states: Assume that two cubics C1 and C2 in the projective plane meet in nine (different) points, as they do in general over an algebraically closed field. Then every cubic that passes through any eight of the points also passes through the ninth point. A more intrinsic form of the Cayley–Bacharach theorem reads as follows: Every cubic curve C over an algebraically closed field that passes through a given set of eight points P1, .
Affine planeIn geometry, an affine plane is a two-dimensional affine space. Typical examples of affine planes are Euclidean planes, which are affine planes over the reals equipped with a metric, the Euclidean distance. In other words, an affine plane over the reals is a Euclidean plane in which one has "forgotten" the metric (that is, one does not talk of lengths nor of angle measures).
Projective rangeIn mathematics, a projective range is a set of points in projective geometry considered in a unified fashion. A projective range may be a projective line or a conic. A projective range is the dual of a pencil of lines on a given point. For instance, a correlation interchanges the points of a projective range with the lines of a pencil. A projectivity is said to act from one range to another, though the two ranges may coincide as sets. A projective range expresses projective invariance of the relation of projective harmonic conjugates.
Projection (mathematics)In mathematics, a projection is an idempotent mapping of a set (or other mathematical structure) into a subset (or sub-structure). In this case, idempotent means that projecting twice is the same as projecting once. The restriction to a subspace of a projection is also called a projection, even if the idempotence property is lost. An everyday example of a projection is the casting of shadows onto a plane (sheet of paper): the projection of a point is its shadow on the sheet of paper, and the projection (shadow) of a point on the sheet of paper is that point itself (idempotency).