Alexandre SchmidAlexandre Schmid received the M.Sc. degree in microengineering and the Ph.D. degree in electrical engineering from the Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland, in 1994 and 2000, respectively. Since 1994, he has been with the EPFL, working with the Integrated Systems Laboratory as a Research and Teaching Assistant, and with the Electronics Laboratories as a Postdoctoral Fellow. In 2002, he was a Senior Research Associate with the Microelectronic Systems Laboratory, where he has been conducting research in the fields of bioelectronic interfaces and implantable biomedical electronics, nonconventional signal processing and neuromorphic hardware, and reliability of nanoelectronic devices, and also teaches with the Microengineering and Electrical Engineering Departments of EPFL. Since 2011, he is a Maître d'Enseignement et de Recherche (MER) Faculty Member with EPFL. He is a coauthor of two books, Reliability of Nanoscale Circuits and Systems, Methodologies and Circuit Architectures, Springer, 2011, and Wireless Cortical Implantable Systems, Springer, 2013, and a coeditor of one book, as well as over 100 articles published in journals and conferences.
Dr. Schmid has served as the General Chair of the Fourth International Conference on Nano-Networks in 2009 and has been serving as an Associate Editor of the Institute of Electrical, Information, and Communication Engineers Electronics Express since 2009.
Mohammad Amin ShokrollahiAmin Shokrollahi has worked on a variety of topics, including coding theory, computational number theory and algebra, and computational/algebraic complexity theory. He is best known for his work on iterative decoding algorithms of graph based codes, an area in which he holds a number of granted and pending patents. He is the co-inventor of Tornado codes, and the inventor of Raptor codes. His codes have been standardized and successfully deployed in practical areas dealing with data transmission over lossy networks.
Prior to joining EPFL, Amin Shokrollahi has held positions as the chief scientist of Digital Fountain, member of the technical staff at Bell Laboratories, senior researcher at the International Computer Science Insitute in Berkeley, and assistant professor at the department of computer science of the university of Bonn. He is a Fellow of the IEEE, and he was awarded the Best Paper Award of the IEEE IT Society in 2002 for his work on iterative decoding of LDPC code, the IEEE Eric Sumner Award in 2007 for the development of Fountain Codes, and the joint Communication Society/Information Theory Society best paper award of 2007 for his paper on Raptor Codes.
Eugen Brühwilerbirth date: 19.11.1958 nationality: Swiss (native from Dussnang, Canton of Thurgau) Education : - July 1988 : doctoral degree from the Swiss Federal Institute of Technology in Lausanne (EPFL), Switzerland with a thesis entitled Fracture mechanics of dam concrete subjected to quasi-static and seismic loading conditions - December 1983 : civil engineering diploma (university degree) from the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland Professional Experience : - Since 1st April 1995 : Professor of Structural Engineering at EPFL and Head of the Laboratory of Maintenance, Construction and Safety for Civil Structures (MCS) (often considered being the first chair worldwide devoted exclusively to existing civil structures). - 1991-94 Project Manager and structural engineer with the Swiss Federal Railways (SBB), Division of Bridges and Structures, Zurich: Monitoring and maintenance of bridges and structures, Project manager and checking engineer for the construction of new bridges and rehabilitation of existing bridges. - 1989/90 Research associate at the Department of Civil Engineering, University of Colorado, Boulder, USA : Fracture mechanics of concrete and fracture of concrete dams. - 1986-88 Doctoral student at EPFL-LMC (Building Materials, Prof. Wittmann) : Fracture mechanics of concrete, fracture of concrete dams under seismic loading - 1984/85 Research engineer at EPFL-ICOM (Steel Structures, Prof. Badoux and Prof. Hirt) : Fatigue behaviour and fracture mechanics of riveted bridges
Dominique BonvinDominique Bonvin is Professor and Director of the Automatic Control Laboratory of EPFL. He received his Diploma in Chemical Engineering from ETH Zürich, and his Ph.D. degree from the University of California, Santa Barbara. He worked in the field of process control for the Sandoz Corporation in Basel and with the Systems Engineering Group of ETH Zürich. He joined the EPFL in 1989, where his current research interests include modeling, control and optimization of dynamic systems. He served as Director of the Automatic Control Laboratory for the periods 1993-97, 2003-2007 and again since 2012, Head of the Mechanical Engineering Department in 1995-97 and Dean of Bachelor and Master Studies at EPFL for the period 2004-2011.
Marilyne AndersenMarilyne Andersen is a Full Professor of Sustainable Construction Technologies and heads the Laboratory of Integrated Performance in Design (LIPID) that she launched in the Fall of 2010. She was Dean of the School of Architecture, Civil and Environmental Engineering (ENAC) at EPFL from 2013 to 2018 and is the Academic Director of the Smart Living Lab in Fribourg. She also co-leads the Student Kreativity and Innovation Laboratory (SKIL) at ENAC. Before joining EPFL as a faculty, she was an Assistant Professor then Associate Professor tenure-track in the Building Technology Group of the MIT School of Architecture and Planning and the Head of the MIT Daylighting Lab that she founded in 2004. She has also been Invited Professor at the Singapore University of Technology and Design in 2019. Marilyne Andersen owns a Master of Science in Physics and specialized in daylighting through her PhD in Building Physics at EPFL in the Solar Energy and Building Physics Laboratory (LESO) and as a Visiting Scholar in the Building Technologies Department of the Lawrence Berkeley National Laboratory in California. Her research lies at the interface between science, engineering and architectural design with a dedicated emphasis on the impact of daylight on building occupants. Focused on questions of comfort, perception and health and their implications on energy considerations, these research efforts aim towards a deeper integration of the design process with daylighting performance and indoor comfort, by reaching out to various fields of science, from chronobiology and neuroscience to psychophysics and computer graphics. She is leveraging this research in practice through OCULIGHT dynamics, a startup company she co-founded, which offers specialized consulting services on daylight performance and its psycho-physiological effects on building occupants. She is the author of more than 200 papers published in peer-reviewed journals and international conferences and the recipient of several grants and awards including: the Daylight Award for Research (2016), eleven publication awards and distinctions (2009, 2011, 2012, 2015, 2018, 2019) including the Taylor Technical Talent Award 2009 granted by the Illuminating Engineering Society, the 3M Non-Tenured Faculty Grant (2009), the Mitsui Career Development Professorship at MIT (2008) and the EPFL prize of the Chorafas Foundation awarded to her PhD thesis in Sustainability (2005). Her research or teaching has been supported by professional, institutional and industrial organizations such as: the Swiss and the U.S. National Science Foundations, the Velux Foundation, the European Horizon 2020 program, the Boston Society of Architects, the MIT Energy Initiative and InnoSuisse. She was the leader and faculty advisor of the Swiss Team and its NeighborHub project, who won the U.S. Solar Decathlon 2017 competition with 8 podiums out of 10 contests. She is a member of the Board of the LafargeHolcim Foundation for Sustainable Construction and Head of its Academic Committee. She is also a member of the Editorial Board of the journal Building and Environment by Elsevier, and of the journals LEUKOS (of the Illuminating Engineering Society) and Buildings and Cities, by Taylor and Francis. She is expert to the Innovation Council of InnoSuisse and Founding member as well as Board member of the Foundation Culture du Bâti (CUB), and is also founding member of the Daylight Academy and an active member of several committees of the Illuminating Engineering Society (IES) and International Commission on Illumination (CIE).
Anthony Christopher DavisonAnthony Davison has published on a wide range of topics in statistical theory and methods, and on environmental, biological and financial applications. His main research interests are statistics of extremes, likelihood asymptotics, bootstrap and other resampling methods, and statistical modelling, with a particular focus on the first currently. Statistics of extremes concerns rare events such as storms, high winds and tides, extreme pollution episodes, sporting records, and the like. The subject has a long history, but under the impact of engineering and environmental problems has been an area of intense development in the past 20 years. Davison''s PhD work was in this area, in a project joint between the Departments of Mathematics and Mechanical Engineering at Imperial College, with the aim of modelling potential high exposures to radioactivity due to releases from nuclear installations. The key tools developed, joint with Richard Smith, were regression models for exceedances over high thresholds, which generalized earlier work by hydrologists, and formed the basis of some important later developments. This has led to an ongoing interest in extremes, and in particular their application to environmental and financial data. A major current interest is the development of suitable methods for modelling rare spatio-temporal events, particularly but not only in the context of climate change. Likelihood asymptotics too have undergone very substantial development since 1980. Key tools here have been saddlepoint and related approximations, which can give remarkably accurate approximate distribution and density functions even for very small sample sizes. These approximations can be used for wide classes of parametric models, but also for certain bootstrap and resampling problems. The literature on these methods can seem arcane, but they are potentially widely applicable, and Davison wrote a book joint with Nancy Reid and Alessandra Brazzale intended to promote their use in applications. Bootstrap methods are now used in many areas of application, where they can provide a researcher with accurate inferences tailor-made to the data available, rather than relying on large-sample or other approximations of doubtful validity. The key idea is to replace analytical calculations of biases, variances, confidence and prediction intervals, and other measures of uncertainty with computer simulation from a suitable statistical model. In a nonparametric situation this model consists of the data themselves, and the simulation simply involves resampling from the existing data, while in a parametric case it involves simulation from a suitable parametric model. There is a wide range of possibilities between these extremes, and the book by Davison and Hinkley explores these for many data examples, with the aim of showing how and when resampling methods succeed and why they can fail. He was Editor of Biometrika (2008-2017), Joint Editor of Journal of the Royal Statistical Society, series B (2000-2003), editor of the IMS Lecture Notes Monograph Series (2007), Associate Editor of Biometrika (1987-1999), and Associate Editor of the Brazilian Journal of Probability and Statistics (1987 2006). Currently he on the editorial board of Annual Reviews of Statistics and its Applications. He has served on committees of Royal Statistical Society and of the Institute of Mathematical Statistics. He is an elected Fellow of the American Statistical Assocation and of the Institute of Mathematical Statistics, an elected member of the International Statistical Institute, and a Chartered Statistician. In 2009 he was awarded a laurea honoris causa in Statistical Science by the University of Padova, in 2011 he held a Francqui Chair at Hasselt University, and in 2012 he was Mitchell Lecturer at the University of Glasgow. In 2015 he received the Guy Medal in Silver of the Royal Statistical Society and in 2018 was a Medallion Lecturer of the Institute of Mathematical Statistics.
Alcherio MartinoliI received my Diploma in Electrical Engineering from the Swiss Federal Institute of Technology in Zurich (ETHZ), and a Ph.D. in Computer Science from the Swiss Federal Institute of Technology in Lausanne (EPFL). I am currently an Associate Professor at the School of Architecture, Civil, and Environmental Engineering and the head of the Distributed Intelligent Systems and Algorithms Laboratory. Before joining EPFL I carried out research activities at the Institute of Biomedical Engineering of the ETHZ, at the Institute of Industrial Automation of the Spanish Research Council in Madrid, Spain, and at the California Institute of Technology, Pasadena, U.S.A. Additional information can be found on my full CV.
Edoardo CharbonEdoardo Charbon (SM’00 F’17) received the Elektrotechnik Diploma from ETH Zurich, the M.S. from the University of California at San Diego, and the Ph.D. from the University of California at Berkeley in 1988, 1991, and 1995, respectively, all in electrical engineering and EECS. He has consulted with numerous organizations, including Bosch, X-Fab, Texas Instruments, Maxim, Sony, Agilent, and the Carlyle Group. He was with Cadence Design Systems from 1995 to 2000, where he was the architect of the company's initiative on information hiding for intellectual property protection. In 2000, he joined Canesta Inc., as the Chief Architect, where he led the development of wireless 3-D CMOS image sensors. Since 2002 he has been a member of the faculty of EPFL, where is a full professor since 2015. From 2008 to 2016 he was full professor and chair at the Delft University of Technology, where he spearheaded the university's effort on cryogenic electronics for quantum computing as part of QuTech. He has been the driving force behind the creation of deep-submicron CMOS SPAD technology, which is mass-produced since 2015 and is present in smartphones, telemeters, proximity sensors, and medical diagnostics tools. His interests span from 3-D vision, LiDAR, FLIM, FCS, NIROT to super-resolution microscopy, time-resolved Raman spectroscopy, and cryo-CMOS circuits and systems for quantum computing. He has authored or co-authored over 400 papers and two books, and he holds 23 patents. Dr. Charbon is a distinguished visiting scholar of the W. M. Keck Institute for Space at Caltech, a fellow of the Kavli Institute of Nanoscience Delft, a distinguished lecturer of the IEEE Photonics Society, and a fellow of the IEEE.
Ambrogio FasoliAmbrogio FASOLI was born on November 10, 1964, in Milano, Italy. After a classical high school diploma (Maturità Classica) and graduation from the University of Milano, with the degree of Dottore in Fisica, he obtained his Phd at the Ecole Polytechnique Fédérale (EPFL) with a thesis on chaos in wave-particle interactions in plasmas, which was awarded the Best EPFL Thesis prize, in 1993. He then moved to the JET Joint Undertaking, the largest worlds fusion device, near Oxford, UK, to investigate Alfvén waves and burning plasma physics. In 1995-1996 he took a sabbatical leave, visiting several Universities and Research Institutes in Europe and in the USA, including three months at General Atomics in San Diego. In 1996-1997, during a second period at JET, he participated in the fusion power worlds record experiments in Deuterium-Tritium plasmas at JET. In 1997 he was nominated Assistant Professor in MIT Physics Department, where he led a basic plasma physics group and the international collaboration between MIT and JET. In 2001 Ambrogio FASOLI was nominated Assistant Professor of Physics at EPFL, Lausanne, Switzerland, and Professeur Boursier of the Swiss National Science Foundation. He became member of CRPP Directorate and took the leadership of CRPP basic plasma physics group and of the TCV tokamak, one of the major fusion experiments worldwide. At European level he was scientific coordinator for JET experiments, spokesperson for multi-machine experiments in the frame of International Tokamak Physics Activities, and Project Leader for a JET Enhancement project. In 2005 he became Associate Professor of Physics with tenure at EPFL, then member of EFDA Science and Technology Advisory Committee, and of the Steering Committee of the Association EURATOM-Swiss Confederation. From 2006 he was also Deputy Director, then from 2007 Executive Director of CRPP and from 2008 Full Professor of Physics at EPFL. For a number of years he was the Chair of the EPFL Physics Strategic Committee and a member of the Directorate of the EPFL School of Sciences. Since the summer of 2014 Professor FASOLI was the sole Director of CRPP. He now represents Switzerland in the EUROfusion General Assembly and Bureau, and in the Governing Board for Fusion for Energy. He is member of the EUROfusion DEMO project Board, of the Scientific Board of the Helmotz Virtual Institute on Advanced Microwave Diagnostics, of the European Delegation for the Cooperation between Euratom and the Government of India in Fusion Energy Research, of the European Consortium for the development of the ITER gyratron (EGYC), and participates to numerous international review panels. He chairs the FuseNet Academic Council, the International Advisory Panel for the Laboratory of Excellence Plas@Par in the Sorbonne Universities, the European Consortium for the construction of the ITER microwave Upper Launcher (ECHUL), and the Promotion Committee of the EPFL Faculty of Basic Sciences. He is one the three European representatives in the International Tokamak Physics Activities Coordinating Committee, advising ITER, and the Editor-in-Chief of the IAEA journal Nuclear Fusion. Since January 2019, Ambrogio Fasoli is the Chair of the General Assembly, i.e. the president of EUROfusion, the European Consortium for Development of Fusion Energy. Professor FASOLI is a Fellow of the American Physical Society and since 2001 a Visiting Professor at MIT Physics Department. He is the Director of the Swiss Plasma Center.