Radio-frequency (RF) engineering is a subset of electronic engineering involving the application of transmission line, waveguide, antenna and electromagnetic field principles to the design and application of devices that produce or use signals within the radio band, the frequency range of about 20 kHz up to 300 GHz.
It is incorporated into almost everything that transmits or receives a radio wave, which includes, but is not limited to, mobile phones, radios, WiFi, and two-way radios.
RF engineering is a highly specialized field that typically includes the following areas of expertise:
Design of antenna systems to provide radiative coverage of a specified geographical area by an electromagnetic field or to provide specified sensitivity to an electromagnetic field impinging on the antenna.
Design of coupling and transmission line structures to transport RF energy without radiation.
Application of circuit elements and transmission line structures in the design of oscillators, amplifiers, mixers, detectors, combiners, filters, impedance transforming networks and other devices.
Verification and measurement of performance of radio frequency devices and systems.
To produce quality results, the RF engineer needs to have an in-depth knowledge of mathematics, physics and general electronics theory as well as specialized training in areas such as wave propagation, impedance transformations, filters and microstrip printed circuit board design.
Radio electronics is concerned with electronic circuits which receive or transmit radio signals.
Typically, such circuits must operate at radio frequency and power levels, which imposes special constraints on their design. These constraints increase in their importance with higher frequencies. At microwave frequencies, the reactance of signal traces becomes a crucial part of the physical layout of the circuit.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A rake receiver is a radio receiver designed to counter the effects of multipath fading. It does this by using several "sub-receivers" called fingers, that is, several correlators each assigned to a different multipath component. Each finger independently decodes a single multipath component; at a later stage the contribution of all fingers are combined in order to make the most use of the different transmission characteristics of each transmission path.
A scanner (also referred to as a radio scanner) is a radio receiver that can automatically tune, or scan, two or more discrete frequencies, stopping when it finds a signal on one of them and then continuing to scan other frequencies when the initial transmission ceases. The term scanner generally refers to a communications receiver that is primarily intended for monitoring VHF and UHF landmobile radio systems, as opposed to, for instance, a receiver used to monitor international shortwave transmissions, although these may be classified as scanners too.
Electromagnetic interference (EMI), also called radio-frequency interference (RFI) when in the radio frequency spectrum, is a disturbance generated by an external source that affects an electrical circuit by electromagnetic induction, electrostatic coupling, or conduction. The disturbance may degrade the performance of the circuit or even stop it from functioning. In the case of a data path, these effects can range from an increase in error rate to a total loss of the data.
This course covers the principles and practices of radio astronomical observations, in particular with modern interferometers. Topics range from radio telescope technology to the measurement equation
Be captivated by the exotic objects that populate the Radio Sky and gain a solid understanding of their physics and the fundamental techniques we use to observe them.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Active in rf components, 3d printing technology and aerospace applications. SWISSto12 is a pioneer in next-generation Radio Frequency payload technologies, delivering cutting-edge components for aerospace and telecommunications applications using innovative 3D printing.
Les antennes sont utilisées dans une multitude d'applications de communications et de détection, demandant des fréquences et propriétés d'antennes très différentes. Ce cours décrit la théorie de base
This lecture is oriented towards the study of audio engineering, with a special focus on room acoustics applications. The learning outcomes will be the techniques for microphones and loudspeaker desig
The students will learn about the basic principles of wireless communication systems, including transmission and modulation schemes as well as the basic components and algorithms of a wireless receive
Radio-frequency (RF) engineering is a subset of electronic engineering involving the application of transmission line, waveguide, antenna and electromagnetic field principles to the design and application of devices that produce or use signals within the radio band, the frequency range of about 20 kHz up to 300 GHz. It is incorporated into almost everything that transmits or receives a radio wave, which includes, but is not limited to, mobile phones, radios, WiFi, and two-way radios.
Wireless communication (or just wireless, when the context allows) is the transfer of information (telecommunication) between two or more points without the use of an electrical conductor, optical fiber or other continuous guided medium for the transfer. The most common wireless technologies use radio waves. With radio waves, intended distances can be short, such as a few meters for Bluetooth or as far as millions of kilometers for deep-space radio communications.
In radio engineering, an antenna (American English) or aerial (British English) is the interface between radio waves propagating through space and electric currents moving in metal conductors, used with a transmitter or receiver. In transmission, a radio transmitter supplies an electric current to the antenna's terminals, and the antenna radiates the energy from the current as electromagnetic waves (radio waves). In reception, an antenna intercepts some of the power of a radio wave in order to produce an electric current at its terminals, that is applied to a receiver to be amplified.
Explores the transition to terahertz frequencies and energy efficiency in future wireless networks, emphasizing the move towards sustainable and high-speed communication.
Covers the inspection of visibility data and the use of CASA software for radio astronomy.
Explores the use of waves for heating and current drive in tokamaks, focusing on ICRH and LH waves, their mechanisms, and antenna features.
, , , , ,
Magnonics is a research field that has gained an increasing interest in both the fundamental and applied sciences in recent years. This field aims to explore and functionalize collective spin excitations in magnetically ordered materials for modern informa ...
Advanced antenna system (AAS) is a viable option for 5G millimeter-wave (mmWave) applications. AAS single element is favored to be dual-polarized, wideband, high gain, and compact in order to be utilized for 5G antenna arrays. In this paper, a low complexi ...
This paper presents a solution to overcome the inherently limited bandwidth of substrate-integrated waveguide (SIW) slot antennas. It is analytically shown that by decreasing the permittivity of a dielectric loaded slot antenna, the resulting bandwidth inc ...