MaintainabilityMaintainability is the ease of maintaining or providing maintenance for a functioning product or service. Depending on the field, it can have slightly different meanings. In engineering, maintainability is the ease with which a product can be maintained to: correct defects or their cause, Repair or replace faulty or worn-out components without having to replace still working parts, prevent unexpected working conditions, maximize a product's useful life, maximize efficiency, reliability, and safety, meet new requirements, make future maintenance easier, or cope with a changing environment.
Catastrophe theoryIn mathematics, catastrophe theory is a branch of bifurcation theory in the study of dynamical systems; it is also a particular special case of more general singularity theory in geometry. Bifurcation theory studies and classifies phenomena characterized by sudden shifts in behavior arising from small changes in circumstances, analysing how the qualitative nature of equation solutions depends on the parameters that appear in the equation. This may lead to sudden and dramatic changes, for example the unpredictable timing and magnitude of a landslide.
Operations researchOperations research (operational research) (U.S. Air Force Specialty Code: Operations Analysis), often shortened to the initialism OR, is a discipline that deals with the development and application of analytical methods to improve decision-making. The term management science is occasionally used as a synonym. Employing techniques from other mathematical sciences, such as modeling, statistics, and optimization, operations research arrives at optimal or near-optimal solutions to decision-making problems.
Rare eventsRare or extreme events are events that occur with low frequency, and often refers to infrequent events that have a widespread effect and which might destabilize systems (for example, stock markets, ocean wave intensity or optical fibers or society). Rare events encompass natural phenomena (major earthquakes, tsunamis, hurricanes, floods, asteroid impacts, solar flares, etc.), anthropogenic hazards (warfare and related forms of violent conflict, acts of terrorism, industrial accidents, financial and commodity market crashes, etc.
Taguchi methodsTaguchi methods (タグチメソッド) are statistical methods, sometimes called robust design methods, developed by Genichi Taguchi to improve the quality of manufactured goods, and more recently also applied to engineering, biotechnology, marketing and advertising. Professional statisticians have welcomed the goals and improvements brought about by Taguchi methods, particularly by Taguchi's development of designs for studying variation, but have criticized the inefficiency of some of Taguchi's proposals.
Period-doubling bifurcationIn dynamical systems theory, a period-doubling bifurcation occurs when a slight change in a system's parameters causes a new periodic trajectory to emerge from an existing periodic trajectory—the new one having double the period of the original. With the doubled period, it takes twice as long (or, in a discrete dynamical system, twice as many iterations) for the numerical values visited by the system to repeat themselves. A period-halving bifurcation occurs when a system switches to a new behavior with half the period of the original system.
Model-based systems engineeringModel-based systems engineering (MBSE), according to the International Council on Systems Engineering (INCOSE), is the formalized application of modeling to support system requirements, design, analysis, verification and validation activities beginning in the conceptual design phase and continuing throughout development and later life cycle phases. MBSE is a technical approach to systems engineering that focuses on creating and exploiting domain models as the primary means of information exchange, rather than on document-based information exchange.
Phase portraitIn mathematics, a phase portrait is a geometric representation of the trajectories of a dynamical system in the phase plane. Each set of initial conditions is represented by a different point or curve. Phase portraits are an invaluable tool in studying dynamical systems. They consist of a plot of typical trajectories in the phase space. This reveals information such as whether an attractor, a repellor or limit cycle is present for the chosen parameter value.
Limit cycleIn mathematics, in the study of dynamical systems with two-dimensional phase space, a limit cycle is a closed trajectory in phase space having the property that at least one other trajectory spirals into it either as time approaches infinity or as time approaches negative infinity. Such behavior is exhibited in some nonlinear systems. Limit cycles have been used to model the behavior of many real-world oscillatory systems. The study of limit cycles was initiated by Henri Poincaré (1854–1912).
L-systemAn L-system or Lindenmayer system is a parallel rewriting system and a type of formal grammar. An L-system consists of an alphabet of symbols that can be used to make strings, a collection of production rules that expand each symbol into some larger string of symbols, an initial "axiom" string from which to begin construction, and a mechanism for translating the generated strings into geometric structures. L-systems were introduced and developed in 1968 by Aristid Lindenmayer, a Hungarian theoretical biologist and botanist at the University of Utrecht.