IntermittencyIn dynamical systems, intermittency is the irregular alternation of phases of apparently periodic and chaotic dynamics (Pomeau–Manneville dynamics), or different forms of chaotic dynamics (crisis-induced intermittency). Experimentally, intermittency appears as long periods of almost periodic behavior interrupted by chaotic behavior. As control variables change, the chaotic behavior become more frequent until the system is fully chaotic. This progression is known as the intermittency route to chaos.
Koch snowflakeThe Koch snowflake (also known as the Koch curve, Koch star, or Koch island) is a fractal curve and one of the earliest fractals to have been described. It is based on the Koch curve, which appeared in a 1904 paper titled "On a Continuous Curve Without Tangents, Constructible from Elementary Geometry" by the Swedish mathematician Helge von Koch. The Koch snowflake can be built up iteratively, in a sequence of stages. The first stage is an equilateral triangle, and each successive stage is formed by adding outward bends to each side of the previous stage, making smaller equilateral triangles.
Pitchfork bifurcationIn bifurcation theory, a field within mathematics, a pitchfork bifurcation is a particular type of local bifurcation where the system transitions from one fixed point to three fixed points. Pitchfork bifurcations, like Hopf bifurcations, have two types – supercritical and subcritical. In continuous dynamical systems described by ODEs—i.e. flows—pitchfork bifurcations occur generically in systems with symmetry. The normal form of the supercritical pitchfork bifurcation is For , there is one stable equilibrium at .
Periodic pointIn mathematics, in the study of iterated functions and dynamical systems, a periodic point of a function is a point which the system returns to after a certain number of function iterations or a certain amount of time. Given a mapping f from a set X into itself, a point x in X is called periodic point if there exists an n so that where f_n is the nth iterate of f. The smallest positive integer n satisfying the above is called the prime period or least period of the point x.
Fractal curveA fractal curve is, loosely, a mathematical curve whose shape retains the same general pattern of irregularity, regardless of how high it is magnified, that is, its graph takes the form of a fractal. In general, fractal curves are nowhere rectifiable curves — that is, they do not have finite length — and every subarc longer than a single point has infinite length. A famous example is the boundary of the Mandelbrot set. Fractal curves and fractal patterns are widespread, in nature, found in such places as broccoli, snowflakes, feet of geckos, frost crystals, and lightning bolts.
Viable system theoryViable system theory (VST) concerns cybernetic processes in relation to the development/evolution of dynamical systems. They are considered to be living systems in the sense that they are complex and adaptive, can learn, and are capable of maintaining an autonomous existence, at least within the confines of their constraints. These attributes involve the maintenance of internal stability through adaptation to changing environments. One can distinguish between two strands such theory: formal systems and principally non-formal system.
Requirements analysisIn systems engineering and software engineering, requirements analysis focuses on the tasks that determine the needs or conditions to meet the new or altered product or project, taking account of the possibly conflicting requirements of the various stakeholders, analyzing, documenting, validating and managing software or system requirements. Requirements analysis is critical to the success or failure of a systems or software project.cite book |editor1= Alain Abran |editor2=James W.
Deterministic systemIn mathematics, computer science and physics, a deterministic system is a system in which no randomness is involved in the development of future states of the system. A deterministic model will thus always produce the same output from a given starting condition or initial state. Physical laws that are described by differential equations represent deterministic systems, even though the state of the system at a given point in time may be difficult to describe explicitly.
RequirementIn product development and process optimization, a requirement is a singular documented physical or functional need that a particular design, product or process aims to satisfy. It is commonly used in a formal sense in engineering design, including for example in systems engineering, software engineering, or enterprise engineering. It is a broad concept that could speak to any necessary (or sometimes desired) function, attribute, capability, characteristic, or quality of a system for it to have value and utility to a customer, organization, internal user, or other stakeholder.
ErgodicityIn mathematics, ergodicity expresses the idea that a point of a moving system, either a dynamical system or a stochastic process, will eventually visit all parts of the space that the system moves in, in a uniform and random sense. This implies that the average behavior of the system can be deduced from the trajectory of a "typical" point. Equivalently, a sufficiently large collection of random samples from a process can represent the average statistical properties of the entire process.