Emad OveisiDr Emad Oveisi is a senior scientist at the Interdisciplinary Centre for Electron Microscopy (CIME), EPFL.
Emad received a BSc in Metallurgy and Materials Engineering (2005) and an MSc in Materials Science (2008) both from the University of Tehran (Iran). He graduated with a PhD in Materials Science and Engineering at EPFL in 2014 for a thesis on the "Three-Dimensional STEM Imaging of Dislocations" under the direction of Prof. Cécile Hébert. The PhD thesis at the Electron Spectrometry and Microscopy Laboratory (LSME), served as an introduction to many of the advanced microscopy techniques that have proven to be a platform for his research career. A post-doctoral research at the centre for electron microscopy gave him the opportunity to peruse a cutting-edge research on one of the most modern aberration-corrected transmission electron microscopes.Since the inauguration of the Energypolis campus of EPFL in Sion, he has been the manager and reference scientist of the electron microscopy platform of EPFL-Valais, working with 9 research groups and more than 200 researchers. In addition to this core responsibility, he provides advanced microscopy consulting and service to EPFL scientists and assist their research to the highest level possible.
Emad Oveisi’s research focuses on the application and development of novel electron microscopy techniques, with emphasis on 3D imaging of crystal defects, as well as the precision measurement of materials properties using aberration-corrected S/TEM. In 2018, he received the prestigious Microscopy Innovation Award for inventing “Single-shot three-dimensional electron imaging”, a novel technique that enables 3D imaging of in situ dynamics.
In 2016 Emad was elected as an interim representative for the scientific staff ("corps intermédiaire") to the Council of the Institute of Chemistry (ISIC). Since 2019, he is a member of EPFL Teachers’ Council (CCE) and has been elected as one of its four bureau members. This role allows him to be exposed to new ideas and pedagogical challenges, as well being involved in discussions with the Vice Presidency of Education (VPE) and other teaching organisations for defining teaching strategies at the EPFL.
Anton SchleissProf. Dr. Anton J. Schleiss graduated in Civil Engineering from the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland, in 1978. After joining the Laboratory of Hydraulic, Hydrology and Glaciology at ETH as a research associate and senior assistant, he obtained a Doctorate of Technical Sciences on the topic of pressure tunnel design in 1986. After that he worked for 11 years for Electrowatt Engineering Ltd. (now Pöyry) in Zurich and was involved in the design of many hydropower projects around the world as an expert on hydraulic engineering and underground waterways. Until 1996 he was Head of the Hydraulic Structures Section in the Hydropower Department at Electrowatt. In 1997, he was nominated full professor and became Director of the Laboratory of Hydraulic Constructions (LCH) in the Civil Engineering Department of the Swiss Federal Institute of Technology Lausanne (EPFL). The LCH activities comprise education, research and services in the field of both fundamental and applied hydraulics and design of hydraulic structures and schemes. The research focuses on the interaction between water, sediment-rock, air and hydraulic structures as well as associated environmental issues and involves both numerical and physical modeling of water infrastructures. In May 2018, he became Honorary Professor at EPFL. More than 50 PhD and Postdoc research projects have been carried out under his guidance. From 1999 to 2009 he was Director of the Master of Advanced Studies (MAS) in Water Resources Management and Hydraulic Engineering held in Lausanne in collaboration with ETH Zurich and the universities of Innsbruck (Austria), Munich (Germany), Grenoble (France) and Liège (Belgium). From 2006 to 2012 he was the Head of the Civil Engineering program of EPFL and chairman of the Swiss Committee on Dams (SwissCOLD). In 2006, he obtained the ASCE Karl Emil Hilgard Hydraulic Price as well as the J. C. Stevens Award. He was listed in 2011 among the 20 international personalities that “have made the biggest difference to the sector Water Power & Dam Construction over the last 10 years”. Between 2014 and 2017 he was Council member of International Association for Hydro-Environment Engineering and Research (IAHR) and he was chair of the Europe Regional Division of IAHR until 2016. For his outstanding contributions to advance the art and science of hydraulic structures engineering he obtained in 2015 the ASCE-EWRI Hydraulic Structures Medal. The French Hydro Society (SHF) awarded him with the Grand Prix SHF 2018. After having served as vice-president between 2012 and 2015 he was president of the International Commission on Large Dams (ICOLD) from 2015 to 2018. On behalf of ICOLD he his the coordinator of the EU Horizon 2020 project "Hydropower Europe". With more than 40 years of experience he is regularly involved as a consultant and expert in large water infrastructures projects including hydropower and dams all over the world. Awards (besides those mentioned above): ASCE-Journal of Hydraulic Engineering Outstanding Reviewer Recognition 2013 ASCE-EWRI-Journal of Hydraulic Engineering 2014 Best Technical Note
François MaréchalPh D. in engineering Chemical process engineer
Researcher and lecturer in the field of computer aided process and energy systems engineering.
Lecturer in the mechanical engineering, electrical engineering and environmental sciences engineering in EPFL.
I'm responsible for the Minor in Energy of EPFL and I'm involved in 3 projects of the Competence Center in Energy and Mobility (2nd generation biofuel, Wood SOFC, and gas turbine development with CO2 mitigation) in which i'm contributing to the energy conversion system design and optimisation.
Short summary of my scientific carrer
After a graduation in chemical engineering from the University of Liège, I have obtained a Ph. D. from the University of Liège in the LASSC laboratory of Prof. Kalitventzeff (former president of the European working party on computer aided process engineering). This laboratory was one of the pioneering laboratory in the field of Computer Aided Process Engineering.
In the group of Professor Kalitventzeff, I have worked on the development and the applications of data reconciliation, process modelling and optimisation techniques in the chemical process industry, my experience ranges from nuclear power stations to chemical plants. In the LASSC, I have been responsible from the developments in the field of rational use of energy in the industry. My first research topic has been the methodological development of process integration techniques, combining the use of pinch based methods and of mathematical programming: e.g. for the design of multiperiod heat exchanger networks or Mixed integer non linear programming techniques for the optimal management of utility systems. Fronted with applications in the industry, my work then mainly concentrated on the optimal integration of utility systems considering not only the energy requirements but the cost of the energy requirements and the energy conversion systems. I developed methods for analysing and integrating the utility system, the steam networks, combustion (including waste fuel), gas turbines or other advanced energy conversion systems (cogeneration, refrigeration and heat). The techniques applied uses operation research tools like mixed integer linear programming and exergy analysis. In order to evaluate the results of the utility integration, a new graphical method for representing the integration of the utility systems has been developed. By the use of MILP techniques, the method developed for the utility integration has been extended to handled site scale problems, to incorporate environmental constraints and reduce the water usage. This method (the Effect Modelling and Optimisation method) has been successfully applied to the chemical plants industry, the pulp and paper industry and the power plant. Instead of focusing on academic problems, I mainly developed my research based on industrial applications that lead to valuable and applicable patented results. Recently the methods developed have been extended to realise the thermoeconomic optimisation of integrated systems like fuel cells. My present R&D work concerns the application of multi-objective optimisation strategies in the design of processes and integrated energy conversion systems.
Since 2001, Im working in the Industrial Energy Systems Laboratory (LENI) of Ecole Polytechnique fédérale de Lausanne (EPFL) where Im leading the R&D activities in the field of Computer Aided Analysis and Design of Industrial Energy Systems with a major focus on sustainable energy conversion system development using thermo-economic optimisation methodologies. A part from the application and the development of process integration techniques, that remains my major field of expertise, the applications concern :
Rational use of water and energy in Industrial processes and industrial production sites : projects with NESTLE, EDF, VEOLIA and Borregaard (pulp and paper).Energy conversion and process design : biofuels from waste biomass (with GASNAT, EGO and PSI), water dessalination and waste water treatment plant (VEOLIA), power plant design (ALSTOM), Energy conversion from geothermal sources (BFE). Integrated energy systems in urban areas : together with SCANE and SIG (GE) and IEA annexe 42 for micro-cogeneration systems.
I as well contributed to the definition of the 2000 Watt society and to studies concerning the emergence of green technologies on the market in the frame of the Alliance for Global Sustainability.
Claudio BruschiniClaudio Bruschini holds an MSc in high energy physics from the University of Genova and a PhD in Applied Sciences from the Vrije Universiteit Brussel (VUB). He started his career with INFN (Italy, 1993), in the WA92 CERN collaboration (particle physics), and then moved to CERN as a Fellow in the European GP-MIMD2 project, attached to the NA48 collaboration (particle physics, parallel programming, 1994-1995). He then started his close collaboration with EPFL, first in the DeTeC (Demining Technology Center) project (sensors for landmine detection/humanitarian demining, 1996-1997). After DeTeC's end, he started the first of a series of fruitful collaborations with the Vrije Universiteit Brussel (VUB) on humanitarian demining related R&D (1998). This was followed by the EUDEM survey project (The European Union in Humanitarian Demining, 1998), the EUDEM2 three year EC sponsored support measure (www.eudem.info, 2001-2004), and the DELVE support action (www.delve.vub.ac.be, 2007). In parallel he started working within the EPFL's AQUA group (Advanced Quantum Architectures, Edoardo Charbon), on topics as diverse as ultrasonic sensors for in-air application, optical 3D and high speed 2D sensing, sensor networks, or tracking/motion capture systems, in particular for the preparation of research projects. This culminated in the European MEGAFRAME (www.megaframe.eu, FP6, 2006-2010, SPAD arrays and related in-pixel time stamping electronics in deep submicron CMOS technology) and SPADnet (www.spadnet.eu, FP7, 2010-2014, networked SPAD arrays for Positron Emission Tomography) projects, coordinated by EPFL-AQUA. As from 2009 he also worked with Dario Floreano on the management of the CURVACE Curved Artificial Compound Eyes FP7 project (www.curvace.org), coordinated by EPFL-LIS. He was also active with CHUV (Lausanne University Hospital) within EndoTOFPET-US (endoscopic PET) as well as on a CTI project devoted to the development of a new hand-held standalone tool for tracer-guided medical procedures. In 2014 he had also the pleasure of joining the EPFL ICLAB of Christian Enz during its ramp-up phase, collaborating on device related topics (SNF GigaRadMOST) and biomedical R&D (NanoTera WiseSkin). Claudio is now fully with EPFL’s Advanced Quantum Architecture (AQUA). He has also been active as independent scientific consultant, under the label CBR Scientific Consulting, on the preparation of (European) R&D project proposals and the execution of individual studies, and worked in 2006 for a local start-up as operations manager and R&D advisor.... but this is another story. An unauthorized early biography is available at http://lami.epfl.ch/team/claudiob/... Paul BowenDr. P. Bowen after gaining his BSc in Physics at Imperial College (UK), he obtained his Ph.D. in Physical Chemistry in the field of catalysis from the University of Cambridge, UK, in 1982, He then worked at the BP Research Centre, Sunbury, UK, for 4 years in applied surface sciences before moving to Switzerland and EPFL in 1987. He has been at the Powder Technology Laboratory, in the Materials Institute since its conception in 1988. He has over 190 publications and has written an undergraduate book on ceramic synthesis and processing. Education: 1976-1979 Imperial College of Science and Technology, University of London. B.Sc. Honours in Physics. 1979-1982 Department of Physical Chemistry, University of Cambridge. Certificate of Postgraduate Studies in Chemistry. Thesis: A Mössbauer Study of Some Clay Minerals and their Surfaces. Ph.D. in Physical Chemistry. Thesis: An Iron-57 and Tin-119 Mössbauer Spectroscopic Study of Some Graphite Intercalation Compounds and Carbon Supported Iron Catalysts. Professional Experience: 1983-1986 Research Scientist (Physical Chemist), New Technology Division, British Petroleum Company plc, BP Research Centre, Sunbury on Thames, Middlesex TW16 7LN, England. 1987-1988 Engineer, Ceramics Laboratory, Département des Matériaux, Ecole Polytechnique Fédérale de Lausanne, CH - 1015 Lausanne, Switzerland. 1988-2008 Research Associate/lecturer, Powder Technology Laboratory (Present) Institute des Matériaux, Ecole Polytechnique Fédérale de Lausanne, CH - 1015 Lausanne, Switzerland. 1988- 2015 Maitre DEnsiegnement et Recherche (Lecturer & Researcher), Powder Technology Laboratory, Institute des Matériaux, Ecole Polytechnique Fédérale de Lausanne,CH - 1015 Lausanne, Switzerland 2015 – present Adjunct Professor (Professeur Titulaire), Powder Technology Laboratory (LTP), Materials Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH - 1015 Lausanne, Switzerland
Paul MuraltPaul Muralt received a diploma in experimental physics in 1978 at the Swiss Federal Institute of Technology ETH in Zurich. He accomplished his Ph.D. thesis in the field of commensurate-incommensurate phase transitions at the Solid State Laboratory of ETH. In the years 1984 and 1985 he held a post doctoral position at the IBM Research Laboratory in Zurich where he pioneered the application of scanning tunneling microscopy to surface potential imaging. In 1987, after a stay at the Free University of Berlin, he joined the Balzers group in Liechtenstein. He specialized in sputter deposition techniques, and managed since 1991 a department for development and applications of Physical Vapor Deposition and PECVD processes. In 1993, he joined the Ceramics Laboratory of EPFL in Lausanne. AS group leader for thin films and MEMS devices, he specialized in piezoelectric and pyroelectric MEMS with mostly Pb(Zr,Ti)O3 and AlN thin film. His research interests are in thin film growth in general, and more specifically in property assessment of small ferroelectric structures, in integration issues of ferroelectric and other polar materials, property-microstructure relationships, and applications of polar materials in semiconductor and micro-electro-mechanical devices. More recently he extended his interests to oxide thin films of ionic conductors. The focus in piezoelectric thin films was directed towards AlN-ScN alloys. He gives lectures in thin film processing, micro fabrication, and surface analysis. He authored or co-authored more than 230 scientific articles. He became Fellow of IEEE in 2013. In 2005, he received an outstanding achievement award at the International Symposium on Integrated Ferroelectrics (ISIF), and in 2016 the B.C. Sawyer Memorial award.
Chairman of the International Workshops on Piezoelectric MEMS(http://www.piezomems2011.org/)