Tomas Teijeiro CampoI received my PhD from the Centro Singular de Investigación en Tecnoloxías Intelixentes (CITIUS), University of Santiago de Compostela, Spain, in 2017. During my doctoral studies I developed a novel knowledge-based framework for time series interpretation based on abductive reasoning that has been successfully applied to automatic ECG interpretation and classification. Now I am currently working as a research associate at the Embedded Systems Laboratory (ESL), with Prof. David Atienza. My research interests include knowledge representation, non-monotonic temporal reasoning, event-based sensing, and their application to biosignal abstraction and interpretation in energy-efficient setups.
Giorgio MargaritondoCitizen of the USA and Switzerland, Giorgio Margaritondo was born in Rome, Italy, in 1946. He received the Laurea summa cum laude from the University of Rome in 1969. From 1969 he was an employee of the Italian National Research Council in Rome and Frascati and, in 1975-77, he was at Bell Laboratories in the USA. From 1978 to 1990, he was professor of physics at the University of Wisconsin-Madison in the USA; in 1984 he was nominated associate director for research of the Synchrotron Radiation Center of the same university. In 1990 he was nominated "professeur ordinaire" (full professor) at the EPFL; he directed the Institute of Applied Physics and the Physics Department. He was also a honorary faculty member at Vanderbilt University in Nashville. In 2001 he became Dean of the EPFL Faculty of Basic Sciences. In 2004 he was nominated Provost and he served until 2010, when he became Dean of Continuing Education, until his retirement from the EPFL in 2016 In addition to teaching general physics, his activity concerns the physics of semiconductors and superconductors (electronic states, surfaces and interfaces) and of biological systems; his main experimental techniques are electron spectroscopy and spectromicroscopy, x-ray imaging and scanning near-field microscopy, including experiments with synchrotron light and with free electron lasers. Author of more than 700 scientific publications and 9 books, he was also coordinator in 1995-98 of the scientific division of the Elettra synchrotron in Trieste. In 1997-2003 he was coordinator of the European Commission Round Table on synchrotron radiation, and then became president of the Council of the European Commission Integrated Initiative on Synchrotron and Free Electron Laser Science (IA-SFS and then ELISA), the largest network in the world in this domain. In 2011-15, he was Editor-in-Chief of Journal of Physics D (Applied Physics). He is currently vice-president of the council of the Università della Svizzera Italiana (USI), and president of the Scientific and Technological Committee of the Italian Institute of Technology (IIT). He is Fellow of the American Physical Society and of the American Vacuum Society and Fellow and Chartered Physicist of the Institute of Physics.
Thierry MeyerThierry Meyer received in 1986 a diploma degree (MSc) in chemical engineering from the Swiss Federal Institute of Technology at Lausanne (EPFL). He was awarded in 1989 a PhD at EPFL for his thesis on micromixing in highly viscous polymeric media. He joined the Institute of Chemical Engineering from 1989 till 1993 as senior scientist in the field of polymerization reactions. In 1994 he joined Ciba-Geigy SA in the pigment division as successively development chemist, head of development a.i. and finally production manager for high performance pigments. Returning to the Institute of Chemical Engineering at EPFL in Lausanne by the end of 1998, he was nominated maître denseignement et de recherche (MER) for leading a new research group in the field of polymers and supercritical fluids, and teaching to chemists, chemical engineers and material sciences, disciplines as process development, introduction to chemical engineering, polymer and organic chemistry at master and bachelor program. In 2005 he owned the responsibility of the Occupational Health and Safety of the school of basic sciences on top of his research activities dealing with risk management and supercritical fluids. He is presently teaching introduction to chemical engineering at bachelor level, risk management at master level and specific courses on safety and engineering risk management in continuing education. He acts also as consultant and expert in risk assessment and chemical engineering matters by the ICC (International Chamber of Commerce) of the World Business Organization, by several consultancy companies and by major and SMEs chemical industries. Thierry Meyer is currently member of several international associations of the European Federation of Chemical Engineering, American institution of chemical engineering, American chemical society and senior member of the American Institute of Chemical Engineers. He was elected chairman of the European Working Party on Polymer Reaction Engineering from 2001 till 2006. He his currently the Swiss academic member of the European Working Party on Loss Prevention and Safety Promotion as well as of the European Working Party on Education. He is member of several editorial boards: Chemical Engineering Research and Design, Macromolecular Reaction Engineering, Chemical Engineering and Technology, Journal of Chemical Health and Safety.
Diego GhezziProf. Diego Ghezzi holds the Medtronic Chair in Neuroengineering at the School of Engineering at the Ecole Polytechnique Fédérale de Lausanne. He received his M.Sc. in Biomedical Engineering (2004) and Ph.D. in Bioengineering (2008) from Politecnico di Milano. From 2008 to 2013, he completed his postdoctoral training at Istituto Italiano di Tecnologia in Genova at the Department of Neuroscience and Brain Technologies; where he was promoted to Researcher in 2013. In 2015, he was appointed as Tenure-Track Assistant Professor of Bioengineering at the EPFL Center for Neuroprosthetics and Institute of Bioengineering.
Wulfram GerstnerWulfram Gerstner is Director of the Laboratory of Computational Neuroscience LCN at the EPFL. His research in computational neuroscience concentrates on models of spiking neurons and spike-timing dependent plasticity, on the problem of neuronal coding in single neurons and populations, as well as on the link between biologically plausible learning rules and behavioral manifestations of learning. He teaches courses for Physicists, Computer Scientists, Mathematicians, and Life Scientists at the EPFL. After studies of Physics in Tübingen and at the Ludwig-Maximilians-University Munich (Master 1989), Wulfram Gerstner spent a year as a visiting researcher in Berkeley. He received his PhD in theoretical physics from the Technical University Munich in 1993 with a thesis on associative memory and dynamics in networks of spiking neurons. After short postdoctoral stays at Brandeis University and the Technical University of Munich, he joined the EPFL in 1996 as assistant professor. Promoted to Associate Professor with tenure in February 2001, he is since August 2006 a full professor with double appointment in the School of Computer and Communication Sciences and the School of Life Sciences. Wulfram Gerstner has been invited speaker at numerous international conferences and workshops. He has served on the editorial board of the Journal of Neuroscience, Network: Computation in Neural Systems',
Journal of Computational Neuroscience', and `Science'.
Andreas FusterAndreas Fuster is an Associate Professor of Finance at Swiss Finance Institute @ EPFL and a Research Fellow at the CEPR. Previously, he worked at the Federal Reserve Bank of New York and the Swiss National Bank. Andreas's main research interests are in empirical finance, macroeconomics, and behavioral economics. His recent work has focused in particular on the effects of technological advances on household credit markets. Andreas’s research has been published in academic journals such as the Quarterly Journal of Economics, the Review of Economic Studies, the Journal of Finance, and the Review of Financial Studies. Andreas obtained his Ph.D. from Harvard University and also holds an M.Phil. from Oxford University and a B.A. from the University of Lausanne (Switzerland), all in economics.
Henry MarkramHenry Markram started a dual scientific and medical career at the University of Cape Town, in South Africa. His scientific work in the 80s revealed the polymodal receptive fields of pontomedullary reticular formation neurons in vivo and how acetylcholine re-organized these sensory maps.
He moved to Israel in 1988 and obtained his PhD at the Weizmann Institute where he discovered a link between acetylcholine and memory mechanisms by being the first to show that acetylcholine modulates the NMDA receptor in vitro studies, and thereby gates which synapses can undergo synaptic plasticity. He was also the first to characterize the electrical and anatomical properties of the cholinergic neurons in the medial septum diagonal band.
He carried out a first postdoctoral study as a Fulbright Scholar at the NIH, on the biophysics of ion channels on synaptic vesicles using sub-fractionation methods to isolate synaptic vesicles and patch-clamp recordings to characterize the ion channels. He carried out a second postdoctoral study at the Max Planck Institute, as a Minerva Fellow, where he discovered that individual action potentials propagating back into dendrites also cause pulsed influx of Ca2 into the dendrites and found that sub-threshold activity could also activated a low threshold Ca2 channel. He developed a model to show how different types of electrical activities can divert Ca2 to activate different intracellular targets depending on the speed of Ca2 influx an insight that helps explain how Ca2 acts as a universal second messenger. His most well known discovery is that of the millisecond watershed to judge the relevance of communication between neurons marked by the back-propagating action potential. This phenomenon is now called Spike Timing Dependent Plasticity (STDP), which many laboratories around the world have subsequently found in multiple brain regions and many theoreticians have incorporated as a learning rule. At the Max-Planck he also started exploring the micro-anatomical and physiological principles of the different neurons of the neocortex and of the mono-synaptic connections that they form - the first step towards a systematic reverse engineering of the neocortical microcircuitry to derive the blue prints of the cortical column in a manner that would allow computer model reconstruction.
He received a tenure track position at the Weizmann Institute where he continued the reverse engineering studies and also discovered a number of core principles of the structural and functional organization such as differential signaling onto different neurons, models of dynamic synapses with Misha Tsodyks, the computational functions of dynamic synapses, and how GABAergic neurons map onto interneurons and pyramidal neurons. A major contribution during this period was his discovery of Redistribution of Synaptic Efficacy (RSE), where he showed that co-activation of neurons does not only alter synaptic strength, but also the dynamics of transmission. At the Weizmann, he also found the tabula rasa principle which governs the random structural connectivity between pyramidal neurons and a non-random functional connectivity due to target selection. Markram also developed a novel computation framework with Wolfgang Maass to account for the impact of multiple time constants in neurons and synapses on information processing called liquid computing or high entropy computing.
In 2002, he was appointed Full professor at the EPFL where he founded and directed the Brain Mind Institute. During this time Markram continued his reverse engineering approaches and developed a series of new technologies to allow large-scale multi-neuron patch-clamp studies. Markrams lab discovered a novel microcircuit plasticity phenomenon where connections are formed and eliminated in a Darwinian manner as apposed to where synapses are strengthening or weakened as found for LTP. This was the first demonstration that neural circuits are constantly being re-wired and excitation can boost the rate of re-wiring.
At the EPFL he also completed the much of the reverse engineering studies on the neocortical microcircuitry, revealing deeper insight into the circuit design and built databases of the blue-print of the cortical column. In 2005 he used these databases to launched the Blue Brain Project. The BBP used IBMs most advanced supercomputers to reconstruct a detailed computer model of the neocortical column composed of 10000 neurons, more than 340 different types of neurons distributed according to a layer-based recipe of composition and interconnected with 30 million synapses (6 different types) according to synaptic mapping recipes. The Blue Brain team built dozens of applications that now allow automated reconstruction, simulation, visualization, analysis and calibration of detailed microcircuits. This Proof of Concept completed, Markrams lab has now set the agenda towards whole brain and molecular modeling.
With an in depth understanding of the neocortical microcircuit, Markram set a path to determine how the neocortex changes in Autism. He found hyper-reactivity due to hyper-connectivity in the circuitry and hyper-plasticity due to hyper-NMDA expression. Similar findings in the Amygdala together with behavioral evidence that the animal model of autism expressed hyper-fear led to the novel theory of Autism called the Intense World Syndrome proposed by Henry and Kamila Markram. The Intense World Syndrome claims that the brain of an Autist is hyper-sensitive and hyper-plastic which renders the world painfully intense and the brain overly autonomous. The theory is acquiring rapid recognition and many new studies have extended the findings to other brain regions and to other models of autism.
Markram aims to eventually build detailed computer models of brains of mammals to pioneer simulation-based research in the neuroscience which could serve to aggregate, integrate, unify and validate our knowledge of the brain and to use such a facility as a new tool to explore the emergence of intelligence and higher cognitive functions in the brain, and explore hypotheses of diseases as well as treatments.