Millennium Prize ProblemsThe Millennium Prize Problems are seven well-known complex mathematical problems selected by the Clay Mathematics Institute in 2000. The Clay Institute has pledged a US$1 million prize for the first correct solution to each problem. The Clay Mathematics Institute officially designated the title Millennium Problem for the seven unsolved mathematical problems, the Birch and Swinnerton-Dyer conjecture, Hodge conjecture, Navier–Stokes existence and smoothness, P versus NP problem, Riemann hypothesis, Yang–Mills existence and mass gap, and the Poincaré conjecture at the Millennium Meeting held on May 24, 2000.
Cramér's conjectureIn number theory, Cramér's conjecture, formulated by the Swedish mathematician Harald Cramér in 1936, is an estimate for the size of gaps between consecutive prime numbers: intuitively, that gaps between consecutive primes are always small, and the conjecture quantifies asymptotically just how small they must be. It states that where pn denotes the nth prime number, O is big O notation, and "log" is the natural logarithm.
Additive functionIn number theory, an additive function is an arithmetic function f(n) of the positive integer variable n such that whenever a and b are coprime, the function applied to the product ab is the sum of the values of the function applied to a and b: An additive function f(n) is said to be completely additive if holds for all positive integers a and b, even when they are not coprime. Totally additive is also used in this sense by analogy with totally multiplicative functions. If f is a completely additive function then f(1) = 0.
Bertrand's postulateIn number theory, Bertrand's postulate is a theorem stating that for any integer , there always exists at least one prime number with A less restrictive formulation is: for every , there is always at least one prime such that Another formulation, where is the -th prime, is: for This statement was first conjectured in 1845 by Joseph Bertrand (1822–1900). Bertrand himself verified his statement for all integers . His conjecture was completely proved by Chebyshev (1821–1894) in 1852 and so the postulate is also called the Bertrand–Chebyshev theorem or Chebyshev's theorem.
Average order of an arithmetic functionIn number theory, an average order of an arithmetic function is some simpler or better-understood function which takes the same values "on average". Let be an arithmetic function. We say that an average order of is if as tends to infinity. It is conventional to choose an approximating function that is continuous and monotone. But even so an average order is of course not unique. In cases where the limit exists, it is said that has a mean value (average value) .
On the Number of Primes Less Than a Given Magnitude" die Anzahl der Primzahlen unter einer gegebenen " (usual English translation: "On the Number of Primes Less Than a Given Magnitude") is a seminal 9-page paper by Bernhard Riemann published in the November 1859 edition of the Monatsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin. This paper studies the prime-counting function using analytic methods. Although it is the only paper Riemann ever published on number theory, it contains ideas which influenced thousands of researchers during the late 19th century and up to the present day.
Pythagorean tripleA Pythagorean triple consists of three positive integers a, b, and c, such that a^2 + b^2 = c^2. Such a triple is commonly written (a, b, c), and a well-known example is (3, 4, 5). If (a, b, c) is a Pythagorean triple, then so is (ka, kb, kc) for any positive integer k. A primitive Pythagorean triple is one in which a, b and c are coprime (that is, they have no common divisor larger than 1). For example, (3, 4, 5) is a primitive Pythagorean triple whereas (6, 8, 10) is not.
Glossary of arithmetic and diophantine geometryThis is a glossary of arithmetic and diophantine geometry in mathematics, areas growing out of the traditional study of Diophantine equations to encompass large parts of number theory and algebraic geometry. Much of the theory is in the form of proposed conjectures, which can be related at various levels of generality. Diophantine geometry in general is the study of algebraic varieties V over fields K that are finitely generated over their prime fields—including as of special interest number fields and finite fields—and over local fields.
Terence TaoTerence Chi-Shen Tao (; born 17 July 1975) is an Australian mathematician. He is a professor of mathematics at the University of California, Los Angeles (UCLA), where he holds the James and Carol Collins chair. His research includes topics in harmonic analysis, partial differential equations, algebraic combinatorics, arithmetic combinatorics, geometric combinatorics, probability theory, compressed sensing and analytic number theory. Tao was born to ethnic Chinese immigrant parents and raised in Adelaide.
Diophantine equationIn mathematics, a Diophantine equation is an equation, typically a polynomial equation in two or more unknowns with integer coefficients, such that the only solutions of interest are the integer ones. A linear Diophantine equation equates to a constant the sum of two or more monomials, each of degree one. An exponential Diophantine equation is one in which unknowns can appear in exponents. Diophantine problems have fewer equations than unknowns and involve finding integers that solve simultaneously all equations.