Interference (communication)In telecommunications, an interference is that which modifies a signal in a disruptive manner, as it travels along a communication channel between its source and receiver. The term is often used to refer to the addition of unwanted signals to a useful signal. Common examples include: Electromagnetic interference (EMI) Co-channel interference (CCI), also known as crosstalk Adjacent-channel interference (ACI) Intersymbol interference (ISI) Inter-carrier interference (ICI), caused by doppler shift in OFDM modulation (multitone modulation).
CrosstalkIn electronics, crosstalk is any phenomenon by which a signal transmitted on one circuit or channel of a transmission system creates an undesired effect in another circuit or channel. Crosstalk is usually caused by undesired capacitive, inductive, or conductive coupling from one circuit or channel to another. Crosstalk is a significant issue in structured cabling, audio electronics, integrated circuit design, wireless communication and other communications systems.
Return lossIn telecommunications, return loss is a measure in relative terms of the power of the signal reflected by a discontinuity in a transmission line or optical fiber. This discontinuity can be caused by a mismatch between the termination or load connected to the line and the characteristic impedance of the line. It is usually expressed as a ratio in decibels (dB); where RL(dB) is the return loss in dB, Pi is the incident power and Pr is the reflected power. Return loss is related to both standing wave ratio (SWR) and reflection coefficient (Γ).
Time-domain reflectometerA time-domain reflectometer (TDR) is an electronic instrument used to determine the characteristics of electrical lines by observing reflected pulses. It can be used to characterize and locate faults in metallic cables (for example, twisted pair wire or coaxial cable), and to locate discontinuities in a connector, printed circuit board, or any other electrical path. A TDR measures reflections along a conductor. In order to measure those reflections, the TDR will transmit an incident signal onto the conductor and listen for its reflections.
Campus radioCampus radio (also known as college radio, university radio or student radio) is a type of radio station that is run by the students of a college, university or other educational institution. Programming may be exclusively created or produced by students, or may include program contributions from the local community in which the radio station is based. Sometimes campus radio stations are operated for the purpose of training professional radio personnel, sometimes with the aim of broadcasting educational programming, while other radio stations exist to provide alternative to commercial broadcasting or government broadcasters.
RadiometerA radiometer or roentgenometer is a device for measuring the radiant flux (power) of electromagnetic radiation. Generally, a radiometer is an infrared radiation detector or an ultraviolet detector. Microwave radiometers operate in the microwave wavelengths. While the term radiometer can refer to any device that measures electromagnetic radiation (e.g. light), the term is often used to refer specifically to a Crookes radiometer ("light-mill"), a device invented in 1873 in which a rotor (having vanes which are dark on one side, and light on the other) in a partial vacuum spins when exposed to light.
Cable televisionCable television is a system of delivering television programming to consumers via radio frequency (RF) signals transmitted through coaxial cables, or in more recent systems, light pulses through fibre-optic cables. This contrasts with broadcast television (also known as terrestrial television), in which the television signal is transmitted over-the-air by radio waves and received by a television antenna attached to the television; or satellite television, in which the television signal is transmitted over-the-air by radio waves from a communications satellite orbiting the Earth, and received by a satellite dish antenna on the roof.
Digital enhanced cordless telecommunicationsDigital Enhanced Cordless Telecommunications, usually known by the acronym DECT, is a standard primarily used for creating cordless telephone systems. It originated in Europe, where it is the common standard, replacing earlier cordless phone standards, such as 900 MHz CT1 and CT2. Beyond Europe, it has been adopted by Australia and most countries in Asia and South America. North American adoption was delayed by United States radio-frequency regulations. This forced development of a variation of DECT called DECT 6.
Radio-frequency identificationRadio-frequency identification (RFID) uses electromagnetic fields to automatically identify and track tags attached to objects. An RFID system consists of a tiny radio transponder, a radio receiver and transmitter. When triggered by an electromagnetic interrogation pulse from a nearby RFID reader device, the tag transmits digital data, usually an identifying inventory number, back to the reader. This number can be used to track inventory goods. Passive tags are powered by energy from the RFID reader's interrogating radio waves.
Super low frequencySuper low frequency (SLF) is the ITU designation for electromagnetic waves (radio waves) in the frequency range between 30 hertz and 300 hertz. They have corresponding wavelengths of 10,000 to 1,000 kilometers. This frequency range includes the frequencies of AC power grids (50 hertz and 60 hertz). Another conflicting designation which includes this frequency range is Extremely Low Frequency (ELF), which in some contexts refers to all frequencies up to 300 hertz.