Quasi-isometryIn mathematics, a quasi-isometry is a function between two metric spaces that respects large-scale geometry of these spaces and ignores their small-scale details. Two metric spaces are quasi-isometric if there exists a quasi-isometry between them. The property of being quasi-isometric behaves like an equivalence relation on the class of metric spaces. The concept of quasi-isometry is especially important in geometric group theory, following the work of Gromov.
Homotopical algebraIn mathematics, homotopical algebra is a collection of concepts comprising the nonabelian aspects of homological algebra, and possibly the aspects as special cases. The homotopical nomenclature stems from the fact that a common approach to such generalizations is via abstract homotopy theory, as in nonabelian algebraic topology, and in particular the theory of . This subject has received much attention in recent years due to new foundational work of Vladimir Voevodsky, Eric Friedlander, Andrei Suslin, and others resulting in the A1 homotopy theory for quasiprojective varieties over a field.
Topological propertyIn topology and related areas of mathematics, a topological property or topological invariant is a property of a topological space that is invariant under homeomorphisms. Alternatively, a topological property is a proper class of topological spaces which is closed under homeomorphisms. That is, a property of spaces is a topological property if whenever a space X possesses that property every space homeomorphic to X possesses that property. Informally, a topological property is a property of the space that can be expressed using open sets.
Seifert surfaceIn mathematics, a Seifert surface (named after German mathematician Herbert Seifert) is an orientable surface whose boundary is a given knot or link. Such surfaces can be used to study the properties of the associated knot or link. For example, many knot invariants are most easily calculated using a Seifert surface. Seifert surfaces are also interesting in their own right, and the subject of considerable research. Specifically, let L be a tame oriented knot or link in Euclidean 3-space (or in the 3-sphere).
Uniform isomorphismIn the mathematical field of topology a uniform isomorphism or is a special isomorphism between uniform spaces that respects uniform properties. Uniform spaces with uniform maps form a . An isomorphism between uniform spaces is called a uniform isomorphism. A function between two uniform spaces and is called a uniform isomorphism if it satisfies the following properties is a bijection is uniformly continuous the inverse function is uniformly continuous In other words, a uniform isomorphism is a uniformly continuous bijection between uniform spaces whose inverse is also uniformly continuous.
4-manifoldIn mathematics, a 4-manifold is a 4-dimensional topological manifold. A smooth 4-manifold is a 4-manifold with a smooth structure. In dimension four, in marked contrast with lower dimensions, topological and smooth manifolds are quite different. There exist some topological 4-manifolds which admit no smooth structure, and even if there exists a smooth structure, it need not be unique (i.e. there are smooth 4-manifolds which are homeomorphic but not diffeomorphic).
Hausdorff spaceIn topology and related branches of mathematics, a Hausdorff space (ˈhaʊsdɔːrf , ˈhaʊzdɔːrf ), separated space or T2 space is a topological space where, for any two distinct points, there exist neighbourhoods of each which are disjoint from each other. Of the many separation axioms that can be imposed on a topological space, the "Hausdorff condition" (T2) is the most frequently used and discussed. It implies the uniqueness of limits of sequences, nets, and filters. Hausdorff spaces are named after Felix Hausdorff, one of the founders of topology.
HomeomorphismIn the mathematical field of topology, a homeomorphism (, named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomorphisms in the —that is, they are the mappings that preserve all the topological properties of a given space. Two spaces with a homeomorphism between them are called homeomorphic, and from a topological viewpoint they are the same.
Exact sequenceAn exact sequence is a sequence of morphisms between objects (for example, groups, rings, modules, and, more generally, objects of an ) such that the of one morphism equals the kernel of the next. In the context of group theory, a sequence of groups and group homomorphisms is said to be exact at if . The sequence is called exact if it is exact at each for all , i.e., if the image of each homomorphism is equal to the kernel of the next. The sequence of groups and homomorphisms may be either finite or infinite.
Chain complexIn mathematics, a chain complex is an algebraic structure that consists of a sequence of abelian groups (or modules) and a sequence of homomorphisms between consecutive groups such that the of each homomorphism is included in the kernel of the next. Associated to a chain complex is its homology, which describes how the images are included in the kernels. A cochain complex is similar to a chain complex, except that its homomorphisms are in the opposite direction. The homology of a cochain complex is called its cohomology.