A toxin is a naturally occurring organic poison produced by metabolic activities of living cells or organisms. They occur especially as proteins, often conjugated. The term was first used by organic chemist Ludwig Brieger (1849–1919) and is derived from the word "toxic".
Toxins can be small molecules, peptides, or proteins that are capable of causing disease on contact with or absorption by body tissues interacting with biological macromolecules such as enzymes or cellular receptors. They vary greatly in their toxicity, ranging from usually minor (such as a bee sting) to potentially fatal even at extremely low doses (such as botulinum toxin).
Toxins are often distinguished from other chemical agents strictly based on their biological origin.
Less strict understandings embrace naturally occurring non-organic toxins, such as arsenic. Other understandings embrace synthetic analogs of naturally occurring organic poisons as toxins, and may or may not embrace naturally occurring non-organic poisons. It is important to confirm usage if a common understanding is critical.
Toxins are a subset of toxicants. The term toxicant is preferred when the poison is man-made and therefore artificial. The human and scientific genetic assembly of a natural-based toxin should be considered a toxin as it is identical to its natural counterpart. The debate is one of linguistic semantics.
The word toxin does not specify method of delivery (as opposed to venom, a toxin delivered via a bite, sting, etc.). Poison is a related but broader term that encompasses both toxins and toxicants; poisons may enter the body through any means - typically inhalation, ingestion, or skin absorption. Toxin, toxicant, and poison are often used interchangeably despite these subtle differences in definition. The term toxungen has also been proposed to refer to toxins that are delivered onto the body surface of another organism without an accompanying wound.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Toxoplasma gondii (ˈtɒksəˌplæzmə_ˈɡɒndi.aɪ,_-iː) is a parasitic protozoan (specifically an apicomplexan) that causes toxoplasmosis. Found worldwide, T. gondii is capable of infecting virtually all warm-blooded animals, but felids are the only known definitive hosts in which the parasite may undergo sexual reproduction. In rodents, T. gondii alters behavior in ways that increase the rodents' chances of being preyed upon by felids. Support for this "manipulation hypothesis" stems from studies showing that T.
Trypanosoma brucei is a species of parasitic kinetoplastid belonging to the genus Trypanosoma that is present in sub-Saharan Africa. Unlike other protozoan parasites that normally infect blood and tissue cells, it is exclusively extracellular and inhabits the blood plasma and body fluids. It causes deadly vector-borne diseases: African trypanosomiasis or sleeping sickness in humans, and animal trypanosomiasis or nagana in cattle and horses. It is a species complex grouped into three subspecies: T. b. brucei, T.
Cryptosporidium, sometimes called crypto, is a genus of apicomplexan parasitic alveolates that can cause a respiratory and gastrointestinal illness (cryptosporidiosis) that primarily involves watery diarrhea (intestinal cryptosporidiosis), sometimes with a persistent cough (respiratory cryptosporidiosis). Treatment of gastrointestinal infection in humans involves fluid rehydration, electrolyte replacement, and management of any pain. For cryptosporidiosis, supportive treatment and symptom management are the primary treatments for immunocompetent individuals.
Inflammation (from inflammatio) is part of the complex biological response of body tissues to harmful stimuli, such as pathogens, damaged cells, or irritants, and is a protective response involving immune cells, blood vessels, and molecular mediators. The function of inflammation is to eliminate the initial cause of cell injury, clear out necrotic cells and tissues damaged from the original insult and the inflammatory process, and initiate tissue repair.
An organism () is any biological living system that functions as an individual life form. All organisms are composed of cells (cell theory). The idea of organism is based on the concept of minimal functional unit of life. Three traits have been proposed to play the main role in qualification as an organism: noncompartmentability – structure that cannot be divided without its functionality loss, individuality – the entity has simultaneous holding of genetic uniqueness, genetic homogeneity and autonomy, distinctness – genetic information has to maintain open-system (a cell).
Embryology (from Greek ἔμβρυον, embryon, "the unborn, embryo"; and -λογία, -logia) is the branch of animal biology that studies the prenatal development of gametes (sex cells), fertilization, and development of embryos and fetuses. Additionally, embryology encompasses the study of congenital disorders that occur before birth, known as teratology. Early embryology was proposed by Marcello Malpighi, and known as preformationism, the theory that organisms develop from pre-existing miniature versions of themselves.