Ultrasound is sound with frequencies greater than 20 kilohertz. This frequency is the approximate upper audible limit of human hearing in healthy young adults. The physical principles of acoustic waves apply to any frequency range, including ultrasound. Ultrasonic devices operate with frequencies from 20 kHz up to several gigahertz.
Ultrasound is used in many different fields. Ultrasonic devices are used to detect objects and measure distances. Ultrasound imaging or sonography is often used in medicine. In the nondestructive testing of products and structures, ultrasound is used to detect invisible flaws. Industrially, ultrasound is used for cleaning, mixing, and accelerating chemical processes. Animals such as bats and porpoises use ultrasound for locating prey and obstacles.
Acoustics, the science of sound, starts as far back as Pythagoras in the 6th century BC, who wrote on the mathematical properties of stringed instruments. Echolocation in bats was discovered by Lazzaro Spallanzani in 1794, when he demonstrated that bats hunted and navigated by inaudible sound, not vision. Francis Galton in 1893 invented the Galton whistle, an adjustable whistle that produced ultrasound, which he used to measure the hearing range of humans and other animals, demonstrating that many animals could hear sounds above the hearing range of humans.
The first article on the history of ultrasound was witten in 1948. According to its author,
during the First World War, a Russian engineer named Chilowski submitted an idea for submarine detection to the French Government. The latter invited Paul Langevin, then Director of the School of Physics and Chemistry in Paris, to evaluate it. Chilowski's proposal was to excite a cylindrical, mica condenser by a high-frequency Poulsen arc at approximately 100 kHz and thus to generate an ultrasound beam for detecting submerged objects. The idea of locating underwater obstacles had been suggested prior by L. F. Richardson, following the Titanic disaster.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course provides a comprehensive overview of digital signal processing theory, covering discrete time, Fourier analysis, filter design, sampling, interpolation and quantization; it also includes a
Digital Signal Processing is the branch of engineering that, in the space of just a few decades, has enabled unprecedented levels of interpersonal communication and of on-demand entertainment. By rewo
The first MOOC to teach the basics of plasma physics and its main applications: fusion energy, astrophysical and space plasmas, societal and industrial applications
Frequency (symbol f) is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as temporal frequency for clarity and to distinguish it from spatial frequency. Frequency is measured in hertz (symbol Hz) which is equal to one event per second. Ordinary frequency is related to angular frequency (symbol ω, in radians per second) by a scaling factor of 2π. The period (symbol T) is the interval of time between events, so the period is the reciprocal of the frequency, f=1/T.
The hertz (symbol: Hz) is the unit of frequency in the International System of Units (SI), equivalent to one event (or cycle) per second. The hertz is an SI derived unit whose expression in terms of SI base units is s−1, meaning that one hertz is the reciprocal of one second. It is named after Heinrich Rudolf Hertz (1857–1894), the first person to provide conclusive proof of the existence of electromagnetic waves. Hertz are commonly expressed in multiples: kilohertz (kHz), megahertz (MHz), gigahertz (GHz), terahertz (THz).
Galleria mellonella, the greater wax moth or honeycomb moth, is a moth of the family Pyralidae. G. mellonella is found throughout the world. It is one of two species of wax moths, with the other being the lesser wax moth. G. mellonella eggs are laid in the spring, and they have four life stages. Males are able to generate ultrasonic sound pulses, which, along with pheromones, are used in mating. The larvae of G. mellonella are also often used as a model organism in research.
This lecture is oriented towards the study of audio engineering, with a special focus on room acoustics applications. The learning outcomes will be the techniques for microphones and loudspeaker desig
Ce cours a pour objectif de former les étudiants de section Génie Electrique et Electronique à la conception de systèmes acoustiques, à l'aide d'un formalisme basé sur l'électrotechnique. A la fin du
Le TP de physiologie introduit les approches expérimentales du domaine biomédical, avec les montages de mesure, les capteurs, le conditionnement des signaux, l'acquisition et traitement de données.
Le
Explores transduction and downmixing in micro/nanomechanical devices, focusing on noise sources and signal processing.
Covers fundamental concepts of electroacoustics, including frequency response, sensitivity, efficiency, power, and directivity.
Covers the fundamental concepts of laser operation, including dispersion theory, gain and resonators, different types of laser systems, noise characteristics, optical fibers, ultrafast lasers, and nonlinear frequency conversion.
Otorhinolaryngology (oʊtoʊˌraɪnoʊˌlærɪnˈgɒlədʒi , abbreviated ORL and also known as otolaryngology, otolaryngology – head and neck surgery (ORL–H&N or OHNS), or ear, nose, and throat (ENT) is a surgical subspeciality within medicine that deals with the surgical and medical management of conditions of the head and neck. Doctors who specialize in this area are called otorhinolaryngologists, otolaryngologists, head and neck surgeons, or ENT surgeons or physicians.
In physics, mathematics, engineering, and related fields, a wave is a propagating dynamic disturbance (change from equilibrium) of one or more quantities. Waves can be periodic, in which case those quantities oscillate repeatedly about an equilibrium (resting) value at some frequency. When the entire waveform moves in one direction, it is said to be a traveling wave; by contrast, a pair of superimposed periodic waves traveling in opposite directions makes a standing wave.
Architectural acoustics (also known as building acoustics) is the science and engineering of achieving a good sound within a building and is a branch of acoustical engineering. The first application of modern scientific methods to architectural acoustics was carried out by the American physicist Wallace Sabine in the Fogg Museum lecture room. He applied his newfound knowledge to the design of Symphony Hall, Boston.
In this work, we show the coherent reconstruction of terahertz (THz) transients in thin-film lithium niobate integrated photonics circuits. Our devices modulate the intensity of a probe beam guided through a Mach-Zehnder interferometer (MZI) structure, und ...
New York2023
,
The main output from an Electrochemical Quartz Crystal Microbalance is a frequency shift. This note describes how to separate the mass- and viscous load contributions to this shift by a calibration procedure. The mass calibration is made by electroplating ...
In this letter, we introduce an optimal transport framework for inferring power distributions over both spatial location and temporal frequency. Recently, it has been shown that optimal transport is a powerful tool for estimating spatial spectra that chang ...