In mathematics, the axiom of determinacy (abbreviated as AD) is a possible axiom for set theory introduced by Jan Mycielski and Hugo Steinhaus in 1962. It refers to certain two-person topological games of length ω. AD states that every game of a certain type is determined; that is, one of the two players has a winning strategy.
Steinhaus and Mycielski's motivation for AD was its interesting consequences, and suggested that AD could be true in the smallest natural model L(R) of a set theory, which accepts only a weak form of the axiom of choice (AC) but contains all real and all ordinal numbers. Some consequences of AD followed from theorems proved earlier by Stefan Banach and Stanisław Mazur, and Morton Davis. Mycielski and Stanisław Świerczkowski contributed another one: AD implies that all sets of real numbers are Lebesgue measurable. Later Donald A. Martin and others proved more important consequences, especially in descriptive set theory. In 1988, John R. Steel and W. Hugh Woodin concluded a long line of research. Assuming the existence of some uncountable cardinal numbers analogous to , they proved the original conjecture of Mycielski and Steinhaus that AD is true in L(R).
The axiom of determinacy refers to games of the following specific form:
Consider a subset A of the Baire space ωω of all infinite sequences of natural numbers. Two players, I and II, alternately pick natural numbers
n0, n1, n2, n3, ...
After infinitely many moves, a sequence is generated. Player I wins the game if and only if the sequence generated is an element of A. The axiom of determinacy is the statement that all such games are determined.
Not all games require the axiom of determinacy to prove them determined. If the set A is clopen, the game is essentially a finite game, and is therefore determined. Similarly, if A is a closed set, then the game is determined. It was shown in 1975 by Donald A. Martin that games whose winning set is a Borel set are determined.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematical logic, projective determinacy is the special case of the axiom of determinacy applying only to projective sets. The axiom of projective determinacy, abbreviated PD, states that for any two-player infinite game of perfect information of length ω in which the players play natural numbers, if the victory set (for either player, since the projective sets are closed under complementation) is projective, then one player or the other has a winning strategy.
Determinacy is a subfield of set theory, a branch of mathematics, that examines the conditions under which one or the other player of a game has a winning strategy, and the consequences of the existence of such strategies. Alternatively and similarly, "determinacy" is the property of a game whereby such a strategy exists. Determinacy was introduced by Gale and Stewart in 1950, under the name "determinateness". The games studied in set theory are usually Gale–Stewart games—two-player games of perfect information in which the players make an infinite sequence of moves and there are no draws.
In mathematical logic, descriptive set theory (DST) is the study of certain classes of "well-behaved" subsets of the real line and other Polish spaces. As well as being one of the primary areas of research in set theory, it has applications to other areas of mathematics such as functional analysis, ergodic theory, the study of operator algebras and group actions, and mathematical logic. Descriptive set theory begins with the study of Polish spaces and their Borel sets.
Presentation of Wightman's axiomatic framework to QFT as well as to the necessary mathematical objects to their understanding (Hilbert analysis, distributions, group representations,...).Proofs of
Set Theory as a foundational system for mathematics. ZF, ZFC and ZF with atoms. Relative consistency of the Axiom of Choice, the Continuum Hypothesis, the reals as a countable union of countable sets,
After introducing the foundations of classical and quantum information theory, and quantum measurement, the course will address the theory and practice of digital quantum computing, covering fundament
Humans are comparison machines: comparing and choosing an item among a set of alternatives (such as objects or concepts) is arguably one of the most natural ways for us to express our preferences and opinions. In many applications, the analysis of data con ...
The composition and evolution of a brushite-type calcium phosphate cement was investigated by Solid-State NMR and X-ray during the setting process. The cement is obtained by mixing beta-tricalcium phosphate [Ca-3(PO4)(2), beta-TCP] and monocalcium phosphat ...
We show that the maximum-likelihood (ML) estimate of models derived from Luce’s choice axiom (e.g., the Plackett–Luce model) can be expressed as the stationary distribution of a Markov chain. This conveys insight into several recently proposed spectral inf ...