Related concepts (18)
Chebyshev polynomials
The Chebyshev polynomials are two sequences of polynomials related to the cosine and sine functions, notated as and . They can be defined in several equivalent ways, one of which starts with trigonometric functions: The Chebyshev polynomials of the first kind are defined by Similarly, the Chebyshev polynomials of the second kind are defined by That these expressions define polynomials in may not be obvious at first sight, but follows by rewriting and using de Moivre's formula or by using the angle sum formulas for and repeatedly.
Hermite polynomials
In mathematics, the Hermite polynomials are a classical orthogonal polynomial sequence. The polynomials arise in: signal processing as Hermitian wavelets for wavelet transform analysis probability, such as the Edgeworth series, as well as in connection with Brownian motion; combinatorics, as an example of an Appell sequence, obeying the umbral calculus; numerical analysis as Gaussian quadrature; physics, where they give rise to the eigenstates of the quantum harmonic oscillator; and they also occur in some cases of the heat equation (when the term is present); systems theory in connection with nonlinear operations on Gaussian noise.
Spherical harmonics
In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields. Since the spherical harmonics form a complete set of orthogonal functions and thus an orthonormal basis, each function defined on the surface of a sphere can be written as a sum of these spherical harmonics. This is similar to periodic functions defined on a circle that can be expressed as a sum of circular functions (sines and cosines) via Fourier series.
Orthogonal polynomials
In mathematics, an orthogonal polynomial sequence is a family of polynomials such that any two different polynomials in the sequence are orthogonal to each other under some inner product. The most widely used orthogonal polynomials are the classical orthogonal polynomials, consisting of the Hermite polynomials, the Laguerre polynomials and the Jacobi polynomials. The Gegenbauer polynomials form the most important class of Jacobi polynomials; they include the Chebyshev polynomials, and the Legendre polynomials as special cases.
Gaussian quadrature
In numerical analysis, a quadrature rule is an approximation of the definite integral of a function, usually stated as a weighted sum of function values at specified points within the domain of integration. (See numerical integration for more on quadrature rules.) An n-point Gaussian quadrature rule, named after Carl Friedrich Gauss, is a quadrature rule constructed to yield an exact result for polynomials of degree 2n − 1 or less by a suitable choice of the nodes x_i and weights w_i for i = 1, ..., n.
Gegenbauer polynomials
In mathematics, Gegenbauer polynomials or ultraspherical polynomials C(x) are orthogonal polynomials on the interval [−1,1] with respect to the weight function (1 − x2)α–1/2. They generalize Legendre polynomials and Chebyshev polynomials, and are special cases of Jacobi polynomials. They are named after Leopold Gegenbauer. File:Plot of the Gegenbauer polynomial C n^(m)(x) with n=10 and m=1 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D.
Jacobi polynomials
In mathematics, Jacobi polynomials (occasionally called hypergeometric polynomials) are a class of classical orthogonal polynomials. They are orthogonal with respect to the weight on the interval . The Gegenbauer polynomials, and thus also the Legendre, Zernike and Chebyshev polynomials, are special cases of the Jacobi polynomials. The Jacobi polynomials were introduced by Carl Gustav Jacob Jacobi. The Jacobi polynomials are defined via the hypergeometric function as follows: where is Pochhammer's symbol (for the rising factorial).
Hypergeometric function
In mathematics, the Gaussian or ordinary hypergeometric function 2F1(a,b;c;z) is a special function represented by the hypergeometric series, that includes many other special functions as specific or limiting cases. It is a solution of a second-order linear ordinary differential equation (ODE). Every second-order linear ODE with three regular singular points can be transformed into this equation. For systematic lists of some of the many thousands of published identities involving the hypergeometric function, see the reference works by and .
Laguerre polynomials
In mathematics, the Laguerre polynomials, named after Edmond Laguerre (1834–1886), are solutions of Laguerre's differential equation: which is a second-order linear differential equation. This equation has nonsingular solutions only if n is a non-negative integer. Sometimes the name Laguerre polynomials is used for solutions of where n is still a non-negative integer. Then they are also named generalized Laguerre polynomials, as will be done here (alternatively associated Laguerre polynomials or, rarely, Sonine polynomials, after their inventor Nikolay Yakovlevich Sonin).
Associated Legendre polynomials
In mathematics, the associated Legendre polynomials are the canonical solutions of the general Legendre equation or equivalently where the indices l and m (which are integers) are referred to as the degree and order of the associated Legendre polynomial respectively. This equation has nonzero solutions that are nonsingular on only if l and m are integers with 0 ≤ m ≤ l, or with trivially equivalent negative values. When in addition m is even, the function is a polynomial.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.