Summary
In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields. Since the spherical harmonics form a complete set of orthogonal functions and thus an orthonormal basis, each function defined on the surface of a sphere can be written as a sum of these spherical harmonics. This is similar to periodic functions defined on a circle that can be expressed as a sum of circular functions (sines and cosines) via Fourier series. Like the sines and cosines in Fourier series, the spherical harmonics may be organized by (spatial) angular frequency, as seen in the rows of functions in the illustration on the right. Further, spherical harmonics are basis functions for irreducible representations of SO(3), the group of rotations in three dimensions, and thus play a central role in the group theoretic discussion of SO(3). Spherical harmonics originate from solving Laplace's equation in the spherical domains. Functions that are solutions to Laplace's equation are called harmonics. Despite their name, spherical harmonics take their simplest form in Cartesian coordinates, where they can be defined as homogeneous polynomials of degree in that obey Laplace's equation. The connection with spherical coordinates arises immediately if one uses the homogeneity to extract a factor of radial dependence from the above-mentioned polynomial of degree ; the remaining factor can be regarded as a function of the spherical angular coordinates and only, or equivalently of the orientational unit vector specified by these angles. In this setting, they may be viewed as the angular portion of a set of solutions to Laplace's equation in three dimensions, and this viewpoint is often taken as an alternative definition. Notice, however, that spherical harmonics are not functions on the sphere which are harmonic with respect to the Laplace-Beltrami operator for the standard round metric on the sphere: the only harmonic functions in this sense on the sphere are the constants, since harmonic functions satisfy the Maximum principle.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (32)
PHYS-101(f): General physics : mechanics
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
PHYS-719: Advanced biomedical imaging methods and instrumentation
The main goal of this course is to give the student a solid introduction into approaches, methods, and instrumentation used in biomedical research. A major focus is on Magnetic Resonance Imaging (MRI)
MATH-410: Riemann surfaces
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
Show more
Related lectures (194)
Randomly Vibrating Spheres: Sound Radiation and Directivity Analysis
Explores sound radiation, directivity analysis, and radiation impedances for vibrating spheres.
Meromorphic Functions & Differentials
Explores meromorphic functions, poles, residues, orders, divisors, and the Riemann-Roch theorem.
Wigner Eckart Theorem
Explores the Wigner-Eckart theorem, tensor spherical harmonics, and vector spherical harmonics, focusing on their transformation properties and applications.
Show more
Related publications (156)

Pseudo-Three-Dimensional Analytical Model of Linear Induction Motors for High-Speed Applications

Mario Paolone, André Hodder, Lucien André Félicien Pierrejean, Simone Rametti

Literature on linear induction motors (LIMs) has proposed several approaches to model the behavior of such devices for different applications. In terms of accuracy and fidelity, field analysis-based models are the most relevant. Closed-form or numerical so ...
2024

Maximum Radiation Efficiency of an Implantable Antenna: The Role of High-Order Modes

Anja Skrivervik, Mingxiang Gao, Jakub Liska

A combination of two numerical techniques of computational electromagnetics, namely, method of moments and vector spherical wave expansion, is used to show performance limitations on the radiation efficiency of implantable antennas and to efficiently resol ...
IEEE2023
Show more
Related concepts (32)
Legendre polynomials
In mathematics, Legendre polynomials, named after Adrien-Marie Legendre (1782), are a system of complete and orthogonal polynomials with a vast number of mathematical properties and numerous applications. They can be defined in many ways, and the various definitions highlight different aspects as well as suggest generalizations and connections to different mathematical structures and physical and numerical applications. Closely related to the Legendre polynomials are associated Legendre polynomials, Legendre functions, Legendre functions of the second kind, and associated Legendre functions.
Hilbert space
In mathematics, Hilbert spaces (named after David Hilbert) allow the methods of linear algebra and calculus to be generalized from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that induces a distance function for which the space is a complete metric space.
Associated Legendre polynomials
In mathematics, the associated Legendre polynomials are the canonical solutions of the general Legendre equation or equivalently where the indices l and m (which are integers) are referred to as the degree and order of the associated Legendre polynomial respectively. This equation has nonzero solutions that are nonsingular on only if l and m are integers with 0 ≤ m ≤ l, or with trivially equivalent negative values. When in addition m is even, the function is a polynomial.
Show more
Related MOOCs (1)