Ce cours enseigne les notions élémentaires de la théorie de probabilité et de la statistique, tels que l'inférence, les tests et la régression.
In this course, students learn to design and master algorithms and core concepts related to inference and learning from data and the foundations of adaptation and learning theories with applications.
We cover the theory and applications of sparse stochastic processes (SSP). SSP are solutions of differential equations driven by non-Gaussian innovations. They admit a parsimonious representation in a
A basic course in probability and statistics
This course introduces the principles of model identification for non-linear dynamic systems, and provides a set of possible solution methods that are thoroughly characterized in terms of modelling as
Les étudiants traitent des observations entachées d'incertitude de manière rigoureuse. Ils maîtrisent les principales méthodes de compensation des mesures et d'estimation des paramètres. Ils appliquen
This course covers statistical methods that are widely used in medicine and biology. A key topic is the analysis of longitudinal data: that is, methods to evaluate exposures, effects and outcomes that
Le cours présente les notions de base de la théorie des probabilités et de l'inférence statistique. L'accent est mis sur les concepts principaux ainsi que les méthodes les plus utilisées.
This course covers recent methodology for causal inference in settings with time-varying exposures (longitudinal data) and causally connected units (interference). We will consider theory for identifi
The course introduces modern methods to acquire, clean, and analyze large quantities of financial data efficiently. The second part expands on how to apply these techniques and robust statistics to fi