MATH-414: Stochastic simulationThe student who follows this course will get acquainted with computational tools used to analyze systems with uncertainty arising in engineering, physics, chemistry, and economics. Focus will be on s
MATH-131: Probability and statisticsLe cours présente les notions de base de la théorie des probabilités et de l'inférence statistique. L'accent est mis sur les concepts principaux ainsi que les méthodes les plus utilisées.
MATH-240: StatisticsCe cours donne une introduction au traitement mathématique de la théorie de l'inférence statistique en utilisant la notion de vraisemblance comme un thème central.
COM-406: Foundations of Data ScienceWe discuss a set of topics that are important for the understanding of modern data science but that are typically not taught in an introductory ML course. In particular we discuss fundamental ideas an
EE-566: Adaptation and learningIn this course, students learn to design and master algorithms and core concepts related to inference and learning from data and the foundations of adaptation and learning theories with applications.
MATH-336: Randomization and causationThis course covers formal frameworks for causal inference. We focus on experimental designs, definitions of causal models, interpretation of causal parameters and estimation of causal effects.