Concept

Essential extension

In mathematics, specifically module theory, given a ring R and an R-module M with a submodule N, the module M is said to be an essential extension of N (or N is said to be an essential submodule or large submodule of M) if for every submodule H of M, implies that As a special case, an essential left ideal of R is a left ideal that is essential as a submodule of the left module RR. The left ideal has non-zero intersection with any non-zero left ideal of R. Analogously, an essential right ideal is exactly an essential submodule of the right R module RR. The usual notations for essential extensions include the following two expressions: and The dual notion of an essential submodule is that of superfluous submodule (or small submodule). A submodule N is superfluous if for any other submodule H, implies that . The usual notations for superfluous submodules include: and Here are some of the elementary properties of essential extensions, given in the notation introduced above. Let M be a module, and K, N and H be submodules of M with K N Clearly M is an essential submodule of M, and the zero submodule of a nonzero module is never essential. if and only if and if and only if and Using Zorn's Lemma it is possible to prove another useful fact: For any submodule N of M, there exists a submodule C such that Furthermore, a module with no proper essential extension (that is, if the module is essential in another module, then it is equal to that module) is an injective module. It is then possible to prove that every module M has a maximal essential extension E(M), called the injective hull of M. The injective hull is necessarily an injective module, and is unique up to isomorphism. The injective hull is also minimal in the sense that any other injective module containing M contains a copy of E(M). Many properties dualize to superfluous submodules, but not everything. Again let M be a module, and K, N and H be submodules of M with K N. The zero submodule is always superfluous, and a nonzero module M is never superfluous in itself.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (3)
MATH-311: Algebra IV - rings and modules
Ring and module theory with a major emphasis on commutative algebra and a minor emphasis on homological algebra.
MATH-110(a): Advanced linear algebra I - vector spaces
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire (pour les futurs mathématiciens) et de démontrer rigoureusement les résultats principaux de ce sujet.
MATH-680: Monstrous moonshine
The monstrous moonshine is an unexpected connection between the Monster group and modular functions. In the course we will explain the statement of the conjecture and study the main ideas and concepts
Related lectures (17)
Weyl character formula
Explores the proof of the Weyl character formula for finite-dimensional representations of semisimple Lie algebras.
Rings and Modules: Lecture 1
Covers rings, modules, exact sequences, and finitely generated modules in the context of Noetherian and Artinian properties.
Module Generation: Submodules and Modulus
Explores module generation, submodules, modulus, finite type modules, and morphisms.
Show more
Related publications (14)

The Claude Debussy Solo Piano Corpus

Martin Alois Rohrmeier, Johannes Hentschel, Gabriele Cecchetti, Sabrina Laneve, Ludovica Schaerf

This dataset originates from the DCML corpus initiative and contains musicological research data. For more information, please refer to its documentation page https://dcmlab.github.io/debussy_piano Please cite this dataset as Laneve, S., Schaerf ...
EPFL Infoscience2023

On Energy Control of Modular Multilevel Converters

Milan Utvic

Owing to the advancements in the area of power electronics, efficient and flexible ac to dc conversion is made possible, bringing back into focus the idea of the dc power transmission at various voltage levels. Several technical and economical factors advo ...
EPFL2023

Frédéric Chopin - Mazurkas (A corpus of annotated scores)

Martin Alois Rohrmeier, Markus Franz Josef Neuwirth, Johannes Hentschel

This corpus of annotated MuseScore files has been created within the DCML corpus initiative and employs the DCML harmony annotation standard. It is one out of nine similar corpora that have been grouped together to An Annotated Corpus of Tonal Piano Music ...
Zenodo2022
Show more
Related concepts (7)
Projective cover
In the branch of abstract mathematics called , a projective cover of an object X is in a sense the best approximation of X by a projective object P. Projective covers are the of injective envelopes. Let be a and X an object in . A projective cover is a pair (P,p), with P a projective object in and p a superfluous epimorphism in Hom(P, X). If R is a ring, then in the category of R-modules, a superfluous epimorphism is then an epimorphism such that the kernel of p is a superfluous submodule of P.
Injective hull
In mathematics, particularly in algebra, the injective hull (or injective envelope) of a module is both the smallest injective module containing it and the largest essential extension of it. Injective hulls were first described in . A module E is called the injective hull of a module M, if E is an essential extension of M, and E is injective. Here, the base ring is a ring with unity, though possibly non-commutative. An injective module is its own injective hull. The injective hull of an integral domain is its field of fractions .
Uniform module
In abstract algebra, a module is called a uniform module if the intersection of any two nonzero submodules is nonzero. This is equivalent to saying that every nonzero submodule of M is an essential submodule. A ring may be called a right (left) uniform ring if it is uniform as a right (left) module over itself. Alfred Goldie used the notion of uniform modules to construct a measure of dimension for modules, now known as the uniform dimension (or Goldie dimension) of a module.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.