In the branch of abstract mathematics called , a projective cover of an object X is in a sense the best approximation of X by a projective object P. Projective covers are the of injective envelopes.
Let be a and X an object in . A projective cover is a pair (P,p), with P a projective object in and p a superfluous epimorphism in Hom(P, X).
If R is a ring, then in the category of R-modules, a superfluous epimorphism is then an epimorphism such that the kernel of p is a superfluous submodule of P.
Projective covers and their superfluous epimorphisms, when they exist, are unique up to isomorphism. The isomorphism need not be unique, however, since the projective property is not a full fledged universal property.
The main effect of p having a superfluous kernel is the following: if N is any proper submodule of P, then . Informally speaking, this shows the superfluous kernel causes P to cover M optimally, that is, no submodule of P would suffice. This does not depend upon the projectivity of P: it is true of all superfluous epimorphisms.
If (P,p) is a projective cover of M, and P' is another projective module with an epimorphism , then there is a split epimorphism α from P' to P such that
Unlike injective envelopes and flat covers, which exist for every left (right) R-module regardless of the ring R, left (right) R-modules do not in general have projective covers. A ring R is called left (right) perfect if every left (right) R-module has a projective cover in R-Mod (Mod-R).
A ring is called semiperfect if every finitely generated left (right) R-module has a projective cover in R-Mod (Mod-R). "Semiperfect" is a left-right symmetric property.
A ring is called lift/rad if from R/J to R, where J is the Jacobson radical of R. The property of being lift/rad can be characterized in terms of projective covers: R is lift/rad if and only if direct summands of the R module R/J (as a right or left module) have projective covers.
In the category of R modules:
If M is already a projective module, then the identity map from M to M is a superfluous epimorphism (its kernel being zero).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, specifically module theory, given a ring R and an R-module M with a submodule N, the module M is said to be an essential extension of N (or N is said to be an essential submodule or large submodule of M) if for every submodule H of M, implies that As a special case, an essential left ideal of R is a left ideal that is essential as a submodule of the left module RR. The left ideal has non-zero intersection with any non-zero left ideal of R. Analogously, an essential right ideal is exactly an essential submodule of the right R module RR.
In mathematics, a finitely generated module is a module that has a finite generating set. A finitely generated module over a ring R may also be called a finite R-module, finite over R, or a module of finite type. Related concepts include finitely cogenerated modules, finitely presented modules, finitely related modules and coherent modules all of which are defined below. Over a Noetherian ring the concepts of finitely generated, finitely presented and coherent modules coincide.
A correspondence functor is a functor from the category of finite sets and correspondences to the category of k-modules, where k is a commutative ring. A main tool for this study is the construction of a correspondence functor associated to any finite latt ...
This thesis is in the context of representation theory of finite groups. More specifically, it studies biset functors. In this thesis, I focus on two biset functors: the Burnside functor and the functor of p-permutation modules. For the Burnside functor we ...
EPFL2015
,
A correspondence functor is a functor from the category of finite sets and correspondences to the category of k-modules, where k is a commutative ring. We determine exactly which simple correspondence functors are projective. We also determine which simple ...