As a part of the retina, bipolar cells exist between photoreceptors (rod cells and cone cells) and ganglion cells. They act, directly or indirectly, to transmit signals from the photoreceptors to the ganglion cells. Bipolar cells are so-named as they have a central body from which two sets of processes arise. They can synapse with either rods or cones (rod/cone mixed input BCs have been found in teleost fish but not mammals), and they also accept synapses from horizontal cells. The bipolar cells then transmit the signals from the photoreceptors or the horizontal cells, and pass it on to the ganglion cells directly or indirectly (via amacrine cells). Unlike most neurons, bipolar cells communicate via graded potentials, rather than action potentials. Bipolar cells receive synaptic input from either rods or cones, or both rods and cones, though they are generally designated rod bipolar or cone bipolar cells. There are roughly 10 distinct forms of cone bipolar cells, however, only one rod bipolar cell, due to the rod receptor arriving later in the evolutionary history than the cone receptor. In the dark, a photoreceptor (rod/cone) cell will release glutamate, which inhibits (hyperpolarizes) the ON bipolar cells and excites (depolarizes) the OFF bipolar cells. In light, however, light strikes the photoreceptor cell which causes it to be inhibited (hyperpolarized) due to the activation of opsins which activate G-Proteins that activate phosphodiesterase (PDE) which cleaves cGMP into 5'-GMP. In photoreceptor cells, there is an abundance of cGMP in dark conditions, keeping cGMP-gated Na channels open and so, activating PDE diminishes the supply of cGMP, reducing the number of open Na channels and thus hyperpolarizing the photoreceptor cell, causing less glutamate to be released. This causes the ON bipolar cell to lose its inhibition and become active (depolarized), while the OFF bipolar cell loses its excitation (becomes hyperpolarized) and becomes silent. Rod bipolar cells do not synapse directly on to ganglion cells.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (9)
CS-432: Computational motor control
The course gives (1) a review of different types of numerical models of control of locomotion and movement in animals, from fish to humans, (2) a presentation of different techniques for designing mod
EE-550: Image and video processing
This course covers fundamental notions in image and video processing, as well as covers most popular tools used, such as edge detection, motion estimation, segmentation, and compression. It is compose
BIO-311: Neuroscience
The course starts with fundamentals of electrical - and chemical signaling in neurons. Students then learn how neurons in the brain receive and process sensory information, and how other neurons contr
Show more
Related lectures (34)
Quantifying Statistical Dependence
Delves into quantifying statistical dependence through covariance, correlation, and mutual information.
Optical Coherence Tomography: Techniques and Applications
Covers the principles and applications of Optical Coherence Tomography in various fields, including medical diagnostics and materials science.
Artificial Sight: Restoring Vision with Retinal Implants
Explores bioelectronics, types of blindness, and retinal implants for restoring vision, covering challenges and advancements in artificial sight technologies.
Show more
Related publications (79)

Neuroprotection in the Retina: From Preventing Inflammatory Cell Death to Promoting Vascular Stability in the Central Nervous System

Bokyoung Kim

Glaucoma is one of the leading causes of irreversible blindness worldwide. Glaucoma is defined clinically as the presence of optic nerve head (ONH) degeneration and progressive loss of retinal ganglion cells (RGCs). Intra-ocular pressure (IOP) has been con ...
EPFL2024

Colloidal self-assembly of soft neural interfaces from injectable photovoltaic microdevices

Mahmut Selman Sakar, Zhangjun Huang, Murat Kaynak, Haiyan Jia

Biomimetic retinas with a wide field of view and high resolution are in demand for neuroprosthetics and robot vision. Conventional neural prostheses are manufactured outside the application area and implanted as a complete device using invasive surgery. He ...
2023

Influence of macular pigment on the sensitivity to discomfort glare from daylight

Marilyne Andersen, Jan Wienold, Sneha Jain

Understanding the factors that influence the human perception of glare is necessary to properly address glare risks in buildings and achieve comfortable visual environments, especially in the workplace. Yet large inter-individual variabilities in glare per ...
2023
Show more
Related concepts (11)
Scotopic vision
In the study of human visual perception, scotopic vision (or scotopia) is the vision of the eye under low-light conditions. The term comes from Greek skotos, meaning "darkness", and -opia, meaning "a condition of sight". In the human eye, cone cells are nonfunctional in low visible light. Scotopic vision is produced exclusively through rod cells, which are most sensitive to wavelengths of around 498 nm (blue-green) and are insensitive to wavelengths longer than about 640 nm (red-orange).
Amacrine cell
Amacrine cells are interneurons in the retina. They are named from the Greek roots a– ("non"), makr– ("long") and in– ("fiber"), because of their short neuronal processes. Amacrine cells are inhibitory neurons, and they project their dendritic arbors onto the inner plexiform layer (IPL), they interact with retinal ganglion cells, and bipolar cells or both of these. Amacrine cells operate at inner plexiform layer (IPL), the second synaptic retinal layer where bipolar cells and retinal ganglion cells form synapses.
Retinal ganglion cell
A retinal ganglion cell (RGC) is a type of neuron located near the inner surface (the ganglion cell layer) of the retina of the eye. It receives visual information from photoreceptors via two intermediate neuron types: bipolar cells and retina amacrine cells. Retina amacrine cells, particularly narrow field cells, are important for creating functional subunits within the ganglion cell layer and making it so that ganglion cells can observe a small dot moving a small distance.
Show more
Related MOOCs (3)
Neuro Robotics
At the same time, several different tutorials on available data and data tools, such as those from the Allen Institute for Brain Science, provide you with in-depth knowledge on brain atlases, gene exp
Neurorobotics
The MOOC on Neuro-robotics focuses on teaching advanced learners to design and construct a virtual robot and test its performance in a simulation using the HBP robotics platform. Learners will learn t
Neurorobotics
The MOOC on Neuro-robotics focuses on teaching advanced learners to design and construct a virtual robot and test its performance in a simulation using the HBP robotics platform. Learners will learn t

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.