In any quantitative science, the terms relative change and relative difference are used to compare two quantities while taking into account the "sizes" of the things being compared, i.e. dividing by a standard or reference or starting value. The comparison is expressed as a ratio and is a unitless number. By multiplying these ratios by 100 they can be expressed as percentages so the terms percentage change, percent(age) difference, or relative percentage difference are also commonly used. The terms "change" and "difference" are used interchangeably. Relative change is often used as a quantitative indicator of quality assurance and quality control for repeated measurements where the outcomes are expected to be the same. A special case of percent change (relative change expressed as a percentage) called percent error occurs in measuring situations where the reference value is the accepted or actual value (perhaps theoretically determined) and the value being compared to it is experimentally determined (by measurement).
The relative change formula is not well-behaved under many conditions. Various alternative formulas, called indicators of relative difference or change, have been proposed in the literature. Several authors have found log change and log points to be satisfactory indicators, but these have not seen widespread use.
Given two numerical quantities, vref and v with vref somereference value. their actual change, actual difference, or absolute change is Δv = v − vref. The term absolute difference is sometimes also used even though the absolute value is not taken; the sign of Δ typically is uniform, e.g. across an increasing data series. If the relationship of the value with respect to the reference value (that is, larger or smaller) does not matter in a particular application, the absolute value may be used in place of the actual change in the above formula to produce a value for the relative change which is always non-negative. The actual difference is not usually a good way to compare the numbers, in particular because it depends on the unit of measurement.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Subtraction (which is signified by the minus sign ) is one of the four arithmetic operations along with addition, multiplication and division. Subtraction is an operation that represents removal of objects from a collection. For example, in the adjacent picture, there are 5 − 2 peaches—meaning 5 peaches with 2 taken away, resulting in a total of 3 peaches. Therefore, the difference of 5 and 2 is 3; that is, 5 − 2 = 3.
Covers fundamental operations and constructibility in Euclidean geometry, exploring the limitations of geometric constructions and historical contributions.