Concept

Phytoalexin

Summary
Phytoalexins are antimicrobial substances, some of which are antioxidative as well. They are defined, not by their having any particular chemical structure or character, but by the fact that they are defensively synthesized de novo by plants that produce the compounds rapidly at sites of pathogen infection. In general phytoalexins are broad spectrum inhibitors; they are chemically diverse, and different chemical classes of compounds are characteristic of particular plant taxa. Phytoalexins tend to fall into several chemical classes, including terpenoids, glycosteroids, and alkaloids; however the term applies to any phytochemicals that are induced by microbial infection. Phytoalexins are produced in plants to act as toxins to the attacking organism. They may puncture the cell wall, delay maturation, disrupt metabolism or prevent reproduction of the pathogen in question. Their importance in plant defense is indicated by an increase in susceptibility of plant tissue to infection when phytoalexin biosynthesis is inhibited. Mutants incapable of phytoalexin production exhibit more extensive pathogen colonization as compared to wild types. As such, host-specific pathogens capable of degrading phytoalexins are more virulent than those unable to do so. When a plant cell recognizes particles from damaged cells or particles from the pathogen, the plant launches a two-pronged resistance: a general short-term response and a delayed long-term specific response. As part of the induced resistance, the short-term response, the plant deploys reactive oxygen species such as superoxide and hydrogen peroxide to kill invading cells. In pathogen interactions, the common short-term response is the hypersensitive response, in which cells surrounding the site of infection are signaled to undergo apoptosis, or programmed cell death, in order to prevent the spread of the pathogen to the rest of the plant. Long-term resistance, or systemic acquired resistance (SAR), involves communication of the damaged tissue with the rest of the plant using plant hormones such as jasmonic acid, ethylene, abscisic acid, or salicylic acid.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.