In operator theory, a branch of mathematics, a positive-definite kernel is a generalization of a positive-definite function or a positive-definite matrix. It was first introduced by James Mercer in the early 20th century, in the context of solving integral operator equations. Since then, positive-definite functions and their various analogues and generalizations have arisen in diverse parts of mathematics. They occur naturally in Fourier analysis, probability theory, operator theory, complex function-theory, moment problems, integral equations, boundary-value problems for partial differential equations, machine learning, embedding problem, information theory, and other areas. Let be a nonempty set, sometimes referred to as the index set. A symmetric function is called a positive-definite (p.d.) kernel on if holds for any , given . In probability theory, a distinction is sometimes made between positive-definite kernels, for which equality in (1.1) implies , and positive semi-definite (p.s.d.) kernels, which do not impose this condition. Note that this is equivalent to requiring that any finite matrix constructed by pairwise evaluation, , has either entirely positive (p.d.) or nonnegative (p.s.d.) eigenvalues. In mathematical literature, kernels are usually complex valued functions, but in this article we assume real-valued functions, which is the common practice in applications of p.d. kernels. For a family of p.d. kernels The conical sum is p.d., given The product is p.d., given The limit is p.d. if the limit exists. If is a sequence of sets, and a sequence of p.d. kernels, then both and are p.d. kernels on . Let . Then the restriction of to is also a p.d. kernel. Common examples of p.d. kernels defined on Euclidean space include: Linear kernel: . Polynomial kernel: . Gaussian kernel (RBF kernel): . Laplacian kernel: . Abel kernel: . Kernel generating Sobolev spaces : , where is the Bessel function of the third kind. Kernel generating Paley–Wiener space: . If is a Hilbert space, then its corresponding inner product is a p.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.