Summary
In statistics, originally in geostatistics, kriging or Kriging, (pronounced /ˌˈkɹiːɡɪŋ/) also known as Gaussian process regression, is a method of interpolation based on Gaussian process governed by prior covariances. Under suitable assumptions of the prior, kriging gives the best linear unbiased prediction (BLUP) at unsampled locations. Interpolating methods based on other criteria such as smoothness (e.g., smoothing spline) may not yield the BLUP. The method is widely used in the domain of spatial analysis and computer experiments. The technique is also known as Wiener–Kolmogorov prediction, after Norbert Wiener and Andrey Kolmogorov. The theoretical basis for the method was developed by the French mathematician Georges Matheron in 1960, based on the master's thesis of Danie G. Krige, the pioneering plotter of distance-weighted average gold grades at the Witwatersrand reef complex in South Africa. Krige sought to estimate the most likely distribution of gold based on samples from a few boreholes. The English verb is to krige, and the most common noun is kriging. The word is sometimes capitalized as Kriging in the literature. Though computationally intensive in its basic formulation, kriging can be scaled to larger problems using various approximation methods. Kriging predicts the value of a function at a given point by computing a weighted average of the known values of the function in the neighborhood of the point. The method is closely related to regression analysis. Both theories derive a best linear unbiased estimator based on assumptions on covariances, make use of Gauss–Markov theorem to prove independence of the estimate and error, and use very similar formulae. Even so, they are useful in different frameworks: kriging is made for estimation of a single realization of a random field, while regression models are based on multiple observations of a multivariate data set. The kriging estimation may also be seen as a spline in a reproducing kernel Hilbert space, with the reproducing kernel given by the covariance function.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.