Büchi automatonIn computer science and automata theory, a deterministic Büchi automaton is a theoretical machine which either accepts or rejects infinite inputs. Such a machine has a set of states and a transition function, which determines which state the machine should move to from its current state when it reads the next input character. Some states are accepting states and one state is the start state. The machine accepts an input if and only if it will pass through an accepting state infinitely many times as it reads the input.
Omega languageIn formal language theory within theoretical computer science, an infinite word is an infinite-length sequence (specifically, an ω-length sequence) of symbols, and an ω-language is a set of infinite words. Here, ω refers to the first ordinal number, the set of natural numbers. Let Σ be a set of symbols (not necessarily finite). Following the standard definition from formal language theory, Σ* is the set of all finite words over Σ. Every finite word has a length, which is a natural number.
Alternating finite automatonIn automata theory, an alternating finite automaton (AFA) is a nondeterministic finite automaton whose transitions are divided into existential and universal transitions. For example, let A be an alternating automaton. For an existential transition , A nondeterministically chooses to switch the state to either or , reading a. Thus, behaving like a regular nondeterministic finite automaton. For a universal transition , A moves to and , reading a, simulating the behavior of a parallel machine.
Conway's Game of LifeThe Game of Life, also known simply as Life, is a cellular automaton devised by the British mathematician John Horton Conway in 1970. It is a zero-player game, meaning that its evolution is determined by its initial state, requiring no further input. One interacts with the Game of Life by creating an initial configuration and observing how it evolves. It is Turing complete and can simulate a universal constructor or any other Turing machine.
Linear bounded automatonIn computer science, a linear bounded automaton (plural linear bounded automata, abbreviated LBA) is a restricted form of Turing machine. A linear bounded automaton is a nondeterministic Turing machine that satisfies the following three conditions: Its input alphabet includes two special symbols, serving as left and right endmarkers. Its transitions may not print other symbols over the endmarkers. Its transitions may neither move to the left of the left endmarker nor to the right of the right endmarker.
Pumping lemma for regular languagesIn the theory of formal languages, the pumping lemma for regular languages is a lemma that describes an essential property of all regular languages. Informally, it says that all sufficiently long strings in a regular language may be pumped—that is, have a middle section of the string repeated an arbitrary number of times—to produce a new string that is also part of the language.
Symbol (formal)A logical symbol is a fundamental concept in logic, tokens of which may be marks or a configuration of marks which form a particular pattern. Although the term "symbol" in common use refers at some times to the idea being symbolized, and at other times to the marks on a piece of paper or chalkboard which are being used to express that idea; in the formal languages studied in mathematics and logic, the term "symbol" refers to the idea, and the marks are considered to be a token instance of the symbol.
Introduction to Automata Theory, Languages, and ComputationIntroduction to Automata Theory, Languages, and Computation is an influential computer science textbook by John Hopcroft and Jeffrey Ullman on formal languages and the theory of computation. Rajeev Motwani contributed to later editions beginning in 2000. The records the book's nickname, Cinderella Book, thusly: "So called because the cover depicts a girl (putatively Cinderella) sitting in front of a Rube Goldberg device and holding a rope coming out of it. On the back cover, the device is in shambles after she has (inevitably) pulled on the rope.
Deterministic pushdown automatonIn automata theory, a deterministic pushdown automaton (DPDA or DPA) is a variation of the pushdown automaton. The class of deterministic pushdown automata accepts the deterministic context-free languages, a proper subset of context-free languages. Machine transitions are based on the current state and input symbol, and also the current topmost symbol of the stack. Symbols lower in the stack are not visible and have no immediate effect. Machine actions include pushing, popping, or replacing the stack top.
Unrestricted grammarIn automata theory, the class of unrestricted grammars (also called semi-Thue, type-0 or phrase structure grammars) is the most general class of grammars in the Chomsky hierarchy. No restrictions are made on the productions of an unrestricted grammar, other than each of their left-hand sides being non-empty. This grammar class can generate arbitrary recursively enumerable languages.