In trigonometry, tangent half-angle formulas relate the tangent of half of an angle to trigonometric functions of the entire angle. The tangent of half an angle is the stereographic projection of the circle onto a line. Among these formulas are the following:
From these one can derive identities expressing the sine, cosine, and tangent as functions of tangents of half-angles:
Using double-angle formulae and the Pythagorean identity gives
Taking the quotient of the formulae for sine and cosine yields
Combining the Pythagorean identity with the double-angle formula for the cosine,
rearranging, and taking the square roots yields
and
which, upon division gives
Alternatively,
It turns out that the absolute value signs in these last two formulas may be dropped, regardless of which quadrant α is in. With or without the absolute value bars these formulas do not apply when both the numerator and denominator on the right-hand side are zero.
Also, using the angle addition and subtraction formulae for both the sine and cosine one obtains:
Pairwise addition of the above four formulae yields:
Setting and and substituting yields:
Dividing the sum of sines by the sum of cosines one arrives at:
Applying the formulae derived above to the rhombus figure on the right, it is readily shown that
In the unit circle, application of the above shows that . By similarity of triangles,
It follows that
Weierstrass substitution
In various applications of trigonometry, it is useful to rewrite the trigonometric functions (such as sine and cosine) in terms of rational functions of a new variable . These identities are known collectively as the tangent half-angle formulae because of the definition of . These identities can be useful in calculus for converting rational functions in sine and cosine to functions of t in order to find their antiderivatives.
Geometrically, the construction goes like this: for any point (cos φ, sin φ) on the unit circle, draw the line passing through it and the point (−1, 0). This point crosses the y-axis at some point y = t.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
In trigonometry, trigonometric identities are equalities that involve trigonometric functions and are true for every value of the occurring variables for which both sides of the equality are defined. Geometrically, these are identities involving certain functions of one or more angles. They are distinct from triangle identities, which are identities potentially involving angles but also involving side lengths or other lengths of a triangle. These identities are useful whenever expressions involving trigonometric functions need to be simplified.
In mathematics, the inverse trigonometric functions (occasionally also called arcus functions, antitrigonometric functions or cyclometric functions) are the inverse functions of the trigonometric functions (with suitably restricted domains). Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.
A Pythagorean triple consists of three positive integers a, b, and c, such that a^2 + b^2 = c^2. Such a triple is commonly written (a, b, c), and a well-known example is (3, 4, 5). If (a, b, c) is a Pythagorean triple, then so is (ka, kb, kc) for any positive integer k. A primitive Pythagorean triple is one in which a, b and c are coprime (that is, they have no common divisor larger than 1). For example, (3, 4, 5) is a primitive Pythagorean triple whereas (6, 8, 10) is not.
Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm
Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm
Recently, we have established and used the generalized Littlewood theorem concerning contour integrals of the logarithm of an analytical function to obtain a few new criteria equivalent to the Riemann hypothesis. Here, the same theorem is applied to calcul ...
The goal of fairness in classification is to learn a classifier that does not discriminate against groups of individuals based on sensitive attributes, such as race and gender. One approach to designing fair algorithms is to use relaxations of fairness not ...
The complete radiation field pattern of a vertical Hertzian dipole antenna on or above a lossless or low-loss dielectric half-space is studied using a rigorous Sommerfeld formalism. The reflected fields in the air above the interface and the subsurface fie ...