Summary
The proportional counter is a type of gaseous ionization detector device used to measure particles of ionizing radiation. The key feature is its ability to measure the energy of incident radiation, by producing a detector output pulse that is proportional to the radiation energy absorbed by the detector due to an ionizing event; hence the detector's name. It is widely used where energy levels of incident radiation must be known, such as in the discrimination between alpha and beta particles, or accurate measurement of X-ray radiation dose. A proportional counter uses a combination of the mechanisms of a Geiger–Müller tube and an ionization chamber, and operates in an intermediate voltage region between these. The accompanying plot shows the proportional counter operating voltage region for a co-axial cylinder arrangement. In a proportional counter the fill gas of the chamber is an inert gas which is ionized by incident radiation, and a quench gas to ensure each pulse discharge terminates; a common mixture is 90% argon, 10% methane, known as P-10. An ionizing particle entering the gas collides with an atom of the inert gas and ionizes it to produce an electron and a positively charged ion, commonly known as an "ion pair". As the ionizing particle travels through the chamber it leaves a trail of ion pairs along its trajectory, the number of which is proportional to the energy of the particle if it is fully stopped within the gas. Typically a 1 MeV stopped particle will create about 30,000 ion pairs. The chamber geometry and the applied voltage is such that in most of the chamber the electric field strength is low and the chamber acts as an ion chamber. However, the field is strong enough to prevent re-combination of the ion pairs and causes positive ions to drift towards the cathode and electrons towards the anode. This is the "ion drift" region. In the immediate vicinity of the anode wire, the field strength becomes large enough to produce Townsend avalanches.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (2)
PHYS-440: Particle detection
The course will cover the physics of particle detectors. It will introduce the experimental techniques used in nuclear and particle physics. The lecture includes the interaction of particles with matt
PHYS-452: Radiation detection
The course presents the detection of ionizing radiation in the keV and MeV energy ranges. Physical processes of radiation/matter interaction are introduced. All steps of detection are covered, as well