Summary
In probability theory, the multinomial distribution is a generalization of the binomial distribution. For example, it models the probability of counts for each side of a k-sided dice rolled n times. For n independent trials each of which leads to a success for exactly one of k categories, with each category having a given fixed success probability, the multinomial distribution gives the probability of any particular combination of numbers of successes for the various categories. When k is 2 and n is 1, the multinomial distribution is the Bernoulli distribution. When k is 2 and n is bigger than 1, it is the binomial distribution. When k is bigger than 2 and n is 1, it is the categorical distribution. The term "multinoulli" is sometimes used for the categorical distribution to emphasize this four-way relationship (so n determines the suffix, and k the prefix). The Bernoulli distribution models the outcome of a single Bernoulli trial. In other words, it models whether flipping a (possibly biased) coin one time will result in either a success (obtaining a head) or failure (obtaining a tail). The binomial distribution generalizes this to the number of heads from performing n independent flips (Bernoulli trials) of the same coin. The multinomial distribution models the outcome of n experiments, where the outcome of each trial has a categorical distribution, such as rolling a k-sided die n times. Let k be a fixed finite number. Mathematically, we have k possible mutually exclusive outcomes, with corresponding probabilities p1, ..., pk, and n independent trials. Since the k outcomes are mutually exclusive and one must occur we have pi ≥ 0 for i = 1, ..., k and . Then if the random variables Xi indicate the number of times outcome number i is observed over the n trials, the vector X = (X1, ..., Xk) follows a multinomial distribution with parameters n and p, where p = (p1, ..., pk). While the trials are independent, their outcomes Xi are dependent because they must be summed to n.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (2)
Related courses (10)
MATH-408: Regression methods
General graduate course on regression methods
DH-406: Machine learning for DH
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
Show more