Summary
Supramolecular chemistry refers to the branch of chemistry concerning chemical systems composed of a discrete number of molecules. The strength of the forces responsible for spatial organization of the system range from weak intermolecular forces, electrostatic charge, or hydrogen bonding to strong covalent bonding, provided that the electronic coupling strength remains small relative to the energy parameters of the component. While traditional chemistry concentrates on the covalent bond, supramolecular chemistry examines the weaker and reversible non-covalent interactions between molecules. These forces include hydrogen bonding, metal coordination, hydrophobic forces, van der Waals forces, pi–pi interactions and electrostatic effects. Important concepts advanced by supramolecular chemistry include molecular self-assembly, molecular folding, molecular recognition, host–guest chemistry, mechanically-interlocked molecular architectures, and dynamic covalent chemistry. The study of non-covalent interactions is crucial to understanding many biological processes that rely on these forces for structure and function. Biological systems are often the inspiration for supramolecular research. file:Supramolecular Assembly Lehn.jpg |Self-assembly of a circular double helicate{{Cite journal | doi = 10.1002/anie.199618381| title = Self-Assembly of a Circular Double Helicate| journal = Angewandte Chemie International Edition in English| volume = 35| issue = 16| pages = 1838–1840| year = 1996| last1 = Hasenknopf | first1 = B. | last2 = Lehn | first2 = J. M. | last3 = Kneisel | first3 = B. O. | last4 = Baum | first4 = G. | last5 = Fenske | first5 = D.}} Cucurbituril gyroscope AngewChemIntEd 2002 v41 p275 hires.png|Host–guest complex within another host ([[cucurbituril]]){{Cite journal | doi = 10.1002/1521-3773(20020118)41:23.0.CO;2-M| title = A Cucurbituril-Based Gyroscane: A New Supramolecular Form| journal = Angewandte Chemie International Edition| volume = 41| issue = 2| pages = 275–7| year = 2002| last1 = Day | first1 = A.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (20)
CH-424: Supramolecular chemistry
The course provides an introduction to supramolecular chemistry. In addition, current trends are discussed using recent publications in this area.
MSE-486: Organic electronic materials
This course will introduce students to the field of organic electronic materials. The goal of this course is to discuss the origin of electronic properties in organic materials, charge transport mecha
CH-711: Inorganic chemistry "Applications and spin-offs"
Present and discuss important recent contributions in the field of inorganic chemistry. This will be achieved by student literature seminars based on selected publications,emanating from the last 12 m
Show more