Concept

T-group (mathematics)

In mathematics, in the field of group theory, a T-group is a group in which the property of normality is transitive, that is, every subnormal subgroup is normal. Here are some facts about T-groups: Every simple group is a T-group. Every quasisimple group is a T-group. Every abelian group is a T-group. Every Hamiltonian group is a T-group. Every nilpotent T-group is either abelian or Hamiltonian, because in a nilpotent group, every subgroup is subnormal. Every normal subgroup of a T-group is a T-group. Every homomorphic image of a T-group is a T-group. Every solvable T-group is metabelian. The solvable T-groups were characterized by Wolfgang Gaschütz as being exactly the solvable groups G with an abelian normal Hall subgroup H of odd order such that the quotient group G/H is a Dedekind group and H is acted upon by conjugation as a group of power automorphisms by G. A PT-group is a group in which permutability is transitive. A finite T-group is a PT-group.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.