Concept

T-group (mathematics)

In mathematics, in the field of group theory, a T-group is a group in which the property of normality is transitive, that is, every subnormal subgroup is normal. Here are some facts about T-groups: Every simple group is a T-group. Every quasisimple group is a T-group. Every abelian group is a T-group. Every Hamiltonian group is a T-group. Every nilpotent T-group is either abelian or Hamiltonian, because in a nilpotent group, every subgroup is subnormal. Every normal subgroup of a T-group is a T-group. Every homomorphic image of a T-group is a T-group. Every solvable T-group is metabelian. The solvable T-groups were characterized by Wolfgang Gaschütz as being exactly the solvable groups G with an abelian normal Hall subgroup H of odd order such that the quotient group G/H is a Dedekind group and H is acted upon by conjugation as a group of power automorphisms by G. A PT-group is a group in which permutability is transitive. A finite T-group is a PT-group.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.