Summary
In molecular biology and genetics, GC-content (or guanine-cytosine content) is the percentage of nitrogenous bases in a DNA or RNA molecule that are either guanine (G) or cytosine (C). This measure indicates the proportion of G and C bases out of an implied four total bases, also including adenine and thymine in DNA and adenine and uracil in RNA. GC-content may be given for a certain fragment of DNA or RNA or for an entire genome. When it refers to a fragment, it may denote the GC-content of an individual gene or section of a gene (domain), a group of genes or gene clusters, a non-coding region, or a synthetic oligonucleotide such as a primer. Qualitatively, guanine (G) and cytosine (C) undergo a specific hydrogen bonding with each other, whereas adenine (A) bonds specifically with thymine (T) in DNA and with uracil (U) in RNA. Quantitatively, each GC base pair is held together by three hydrogen bonds, while AT and AU base pairs are held together by two hydrogen bonds. To emphasize this difference, the base pairings are often represented as "G≡C" versus "A=T" or "A=U". DNA with low GC-content is less stable than DNA with high GC-content; however, the hydrogen bonds themselves do not have a particularly significant impact on molecular stability, which is instead caused mainly by molecular interactions of base stacking. In spite of the higher thermostability conferred to a nucleic acid with high GC-content, it has been observed that at least some species of bacteria with DNA of high GC-content undergo autolysis more readily, thereby reducing the longevity of the cell per se. Because of the thermostability of GC pairs, it was once presumed that high GC-content was a necessary adaptation to high temperatures, but this hypothesis was refuted in 2001. Even so, it has been shown that there is a strong correlation between the optimal growth of prokaryotes at higher temperatures and the GC-content of structural RNAs such as ribosomal RNA, transfer RNA, and many other non-coding RNAs.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.